1、June 2009DEUTSCHE NORM English price group 14No part of this standard may be reproduced without prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).ICS 13.080.10!$X8k“1532172www
2、.din.deDDIN ISO 22036Soil quality Determination of trace elements in extracts of soil by inductivelycoupled plasma - atomic emission spectrometry (ICP-AES)(ISO 22036:2008)English version of DIN ISO 22036:2009-06Bodenbeschaffenheit Bestimmung von Spurenelementen in Bodenextrakten mittelsAtomemissions
3、spektrometrie mit induktiv gekoppeltem Plasma (ICP-AES)(ISO 22036:2008)Englische Fassung DIN ISO 22036:2009-06www.beuth.deDocument comprises 34 pagesDIN ISO 22036:2009-06 Contents Page National foreword .3 1 Scope5 2 Normative references5 3 Terms and definitions .6 4 Principle7 5 Interferences 10 5.
4、1 General .10 5.2 Spectral interferences.10 5.3 Non-spectral interferences.11 6 Reagents.12 7 Instrumentation .13 8 Procedure.14 8.1 Cleaning of glassware.14 8.2 Instrument performance parameters.14 8.3 Instrument optimization15 8.4 Alignment of the spectrometer 15 8.5 Calibration methods16 8.6 Solu
5、tions to be prepared 16 8.7 Measurement procedure.17 9 Calculation of results 18 10 Precision.18 11 Expression of results18 12 Test report19 Annex A (informative) Repeatability and precision results 20 Annex B (informative) Interferences .23 Bibliography34 2DIN ISO 22036:2009-06 National foreword Th
6、is standard has been prepared by Technical Committee ISO/TC 190 “Soil quality”, Subcommittee SC 3 “Chemical methods and soil characteristics”. The responsible German body involved in its preparation was the Normenausschuss Wasserwesen (Water Practice Standards Committee), Technical Committee NA 119-
7、01-02-02 UA Chemische und physikalische Verfahren. The DIN Standards corresponding to the International Standards referred to in this document are as follows: ISO 3696 DIN ISO 3696 ISO 5725-1 DIN ISO 5725-1 ISO 5725-2 DIN ISO 5725-2 ISO 11465 DIN ISO 11465 ISO 11466 DIN ISO 11466 ISO 14869-1 DIN ISO
8、 14869-1 ISO 14869-2 DIN ISO 14869-2 ISO 14870 DIN ISO 14870 3DIN ISO 22036:2009-06 4 National Annex NA (informative) Bibliography DIN ISO 3696, Water for analytical laboratory use Specification and test methods DIN ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results Par
9、t 1: General principles and definitions DIN ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method DIN ISO 11465, Soil quality Determination of dry matter and wa
10、ter content on a mass basis Gravimetric method DIN ISO 11466, Soil quality Extraction of trace elements soluble in aqua regia DIN ISO 14869-1, Soil quality Dissolution for the determination of total element content Part 1: Dissolution with hydrofluoric and perchloric acids DIN ISO 14869-2, Soil qual
11、ity Dissolution for the determination of total element content Part 2: Dissolution by alkaline fusion DIN ISO 14870, Soil quality Extraction of trace elements by buffered DTPA solution Soil quality Determination of trace elements in extracts of soil by inductively coupled plasma atomic emission spec
12、trometry (ICP-AES) WARNING The procedures in this International Standard should be carried out by competent, trained persons. Some of the techniques and reagents, including the use of equipment, are potentially very dangerous. Users of this International Standard who are not thoroughly familiar with
13、 the potential dangers and related safe practices should take professional advice before commencing any operation. 1 Scope This International Standard describes the determination of trace elements in digests or extraction solutions from soil by inductively coupled plasma - atomic emission spectromet
14、ry (ICP-AES) for 34 elements (see Table 1). This multi-element determination method is applicable to soil extracts obtained with aqua regia in accordance with ISO 11466, with DTPA in accordance with ISO 14870 or other weak extractants, or soil extracts for the determination of total element contents
15、 using the acid digestion method of ISO 14869-1 or the fusion method of ISO 14869-2. The choice of calibration method depends on the extractant and can be adapted to the extractant concentration. 2 Normative references The following referenced documents are indispensable for the application of this
16、document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO Guide 32, Calibration in analytical chemistry and use of certified reference materials ISO 3696, Water for analytical laborato
17、ry use Specification and test methods ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results Part 1: General principles and definitions ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatabili
18、ty and reproducibility of a standard measurement method ISO 11465, Soil quality Determination of dry matter and water content on a mass basis Gravimetric method ISO 11466, Soil quality Extraction of trace elements soluble in aqua regia ISO 14869-1, Soil quality Dissolution for the determination of t
19、otal element content Part 1: Dissolution with hydrofluoric and perchloric acids ISO 14869-2, Soil quality Dissolution for the determination of total element content Part 2: Dissolution by alkaline fusion ISO 14870, Soil quality Extraction of trace elements by buffered DTPA solution DIN ISO 22036:200
20、9-06 53 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 5725-1, ISO 5725-2, ISO Guide 32 and the following apply. 3.1 analyte element to be determined 3.2 blank calibration solution solution prepared in the same way as the calibration solution but leav
21、ing out the analytes 3.3 blank test solution solution prepared in the same way as the test sample solution but omitting the test portion 3.4 calibration solution solution used to calibrate the instrument, prepared from stock solutions by adding acids, buffer, reference element and salts as needed 3.
22、5 instrument detection limit lowest concentration that can be detected with a defined statistical probability using a clean instrument and a clean solution NOTE The clean solution is usually dilute nitric acid. 3.6 laboratory sample sample sent to the laboratory for analysis 3.7 linearity straight-l
23、ine relationship between the mean result of measurement and the quantity (concentration) of the analyte 3.8 method detection limit lowest concentration that can be detected using a specific analytical method with a defined statistical probability for defined maximum matrix element concentrations 3.9
24、 pure chemical chemical with the highest available purity and known stoichiometry NOTE The content of analyte and contaminants should be known with an established degree of certainty. 3.10 stock solution solution with accurately known analyte concentration(s), prepared from pure chemicals (3.9) NOTE
25、 Stock solutions are reference materials within the meaning of ISO Guide 30. 3.11 test sample portion taken from the laboratory sample after homogenizing, grinding, dividing, etc. DIN ISO 22036:2009-06 63.12 test sample solution solution prepared after extraction or dissolution of the test sample ac
26、cording to appropriate specifications NOTE The test sample solution is intended for use for measurement. 4 Principle Inductively coupled plasma - atomic emission spectrometry (ICP-AES) can be used to determine trace elements in solution. The solution is dispersed by a suitable nebulizer and the resu
27、lting aerosol is transported into the plasma torch. In a radio-frequency inductively coupled plasma the solvent is evaporated, the dried salts are then vaporized, dissociated, atomized and ionized. The atoms or ions are excited thermally and the number of photons emitted during transition to a lower
28、 energy level are measured with optical emission spectrometry. The spectra are dispersed by a grating spectrometer, and the intensities of the emission lines are monitored by photosensitive devices. The identification of the element takes place by means of the wavelength of the radiation (energy of
29、photons), while the concentration of the element is proportional to the intensity of the radiation (number of photons). The ICP-AES method can be used to perform multi-element determinations using sequential or simultaneous optical systems and axial or radial viewing of the plasma. Table 1 shows exa
30、mples of recommended wavelengths, and detection limits for one particular instrument. Data given are valid for water acidified with nitric acid with an optimized instrument. Using other instruments can lead to different detection limits. Adoption of other wavelengths is possible. Table 1 Recommended
31、 wavelengths and estimated detection limits for selected elements and wavelengths obtained using ICP-AES Varian, Vista-MPX megapixel (CD detector features) 9Element wavelengths and analytical lines Axial viewing Radial viewing Element Wavelength nm Lines I = atom II = ion Detection limitg/l aDetecti
32、on limitmg/kg bDetection limit g/l aDetection limitmg/kg bAluminium 396,068 308,215 309,271 396,152 167,078 I I I l 1 2,6 0,1 0,3 0,10 0,26 0,01 0,03 4 4 1 0,4 0,4 0,1 Antimony 206,833 217,581 231,146 I I l 0,5 1,8 2 0,5 0,18 0,2 16 5 1,6 0,5 Arsenic 188,979 193,696 197,198 189,042 188,979 I l l 2 1
33、 5 1,5 0,2 0,1 0,5 0,15 12 11 5 1,2 1,1 0,5 Barium 233,527 455,403 493,409 II II II 0,06 0,01 0,04 0,006 0,001 0,004 0,7 0,15 0,15 0,07 0,02 0,02 Beryllium 313,107 313,402 234,861 II II II 0,03 0,01 0,01 0,003 0,001 0,001 0,15 0,15 0,05 0,02 0,02 0,005 Bismuth 223,061 306,771 315,887 I l 1,8 17 0,18
34、 1,7 6 0,6 Boron 208,959 249,678 249,772 I I l 0,7 1,1 0,5 0,07 0,11 0,05 1,2 1,5 1 0,12 0,15 0,1 DIN ISO 22036:2009-06 7Table 1 (continued) Element wavelengths and analytical lines Axial viewing Radial viewing Element Wavelength nm Lines I = atom II = ion Detection limitg/l aDetection limitmg/kg bD
35、etection limit g/l aDetection limitmg/kg bCadmium 214,438 226,502 228,802 II II II 0,1 0,11 0,20 0,01 0,011 0,02 0,5 0,6 0,5 0,05 0,06 0,05 Calcium 396,847 317,933 393,366 II II II 0,5 0,3 0,5 0,05 0,03 0,05 0,3 6,5 0,03 0,7 Chromium 267,716 205,552 206,149 283,563 284,325 II II II II II 0,1 0,3 0,2
36、 0,01 0,03 0,02 1 0,1 Cobalt 238,892 228,616 230,786 II II II 0,4 0,4 0,04 0,04 1,2 1 0,1 0,1 Copper 327,396 224,700 324,754 I II I 0,3 0,6 0,03 0,06 1,5 0,1 Iron 238,204 239,562 259,940 II II II 0,3 0,5 0,03 0,05 0,9 0,7 0,09 0,07 Lead 220,353 216,999 224,688 261,418 283,306 II I I I I 0,4 1,8 0,04
37、 0,18 8 0,8 Lithium 670,783 460,286 I I 1,7 67 0,17 6,7 1 0,1 Magnesium 279,553 279,079 285,213 279,806 II II I II 0,02 1 0,06 1,5 0,002 0,1 0,006 0,15 0,1 4 0,25 10 0,01 0,4 0,025 1 Manganese 257,610 260,569 279,482 293,306 403,076 259,372 II II II II I ll 0,10 0,4 0,8 0,05 0,01 0,04 0,08 0,005 0,1
38、3 1 0,01 0,1 Mercury 194,227 253,652 184,890 II I I 1,2 1 0,12 0,1 2,5 2 0,25 0,20 Molybdenum 202,030 204,598 II II 0,2 0,6 0,02 0,06 2 3 0,2 0,3 Nickel 231,604 221,647 216,555 232,003 II II I ll 0,4 0,3 0,15 0,04 0,03 0,015 2,1 1,4 0,2 0,14 Phosphorus 177,428 178,222 213,618 214,914 I I I l 1,5 7 1
39、,3 1 0,15 0,7 0,13 0,1 25 5,3 11 2,5 0,53 1,1 DIN ISO 22036:2009-06 8Table 1 (continued) Element wavelengths and analytical lines Axial viewing Radial viewing Element Wavelength nm Lines I = atom II = ion Detection limitg/l aDetection limitmg/kg bDetection limit g/l aDetection limitmg/kg bPotassium
40、766,491 769,896 I I 0,2 23 0,02 2,3 4 12 0,4 1,2 Rubidium 780,03 I 1 0,1 5 0,5 Selenium 196,026 203,985 I I 0,8 2,8 0,08 0,28 16 1,6 Silicon 251,611 212,412 288,158 I I I 0,9 1,3 1 0,09 0,13 0,1 2,2 5 0,22 0,5 Silver 328,068 338,289 I I 0,4 1 0,04 0,1 1 2 0,1 0,2 Sodium 589,592 588,995 330,237 I I I
41、 0,6 12 69 0,06 1,2 6,9 1,5 15 0,2 0,15 Strontium 407,771 421,552 460,733 II II I 0,01 0,01 0,3 0,001 0,001 0,03 0,1 0,1 0,01 0,01 Sulfur 181,962 182,036 I 4 0,4 13 1,3 Thallium 190,800 190,864 II II 2 0,2 13 0,1 Tin 189,933 235,484 283,998 II I l 6 23 11 0,6 2,3 8 20 0,8 2,0 Titanium 336,121 334,94
42、1 337,280 II II II 0,15 0,2 0,2 0,015 0,02 0,02 1 0,25 1 0,1 0,25 0,1 Vanadium 292,402 309,310 311,837 290,882 310,230 II II II ll ll 0,3 0,08 0,1 0,03 0,008 0,01 2 0,2 Zinc 213,856 202,548 206,200 I II ll 0,05 0,03 0,15 0,005 0,003 0,015 0,8 0,7 2 0,08 0,07 0,02 aTypical 3-sigma detection limits us
43、ing 30 s integration time. bThe detection limit (LOD), as a mass fraction of the soil sample in mg/kg dry matter, is given assuming that a test sample of 1 g is extracted and diluted to 100 ml. The LOD shown in Table 1 are only examples of a given equipment and laboratory conditions.Each laboratory
44、shall select appropriate wavelengths and determine LOD under its specific laboratory conditions. NOTE The wavelengths given in Table 1 are often used, but they are given here only as an example. Adoption of other wavelengths is possible. The limit of detection and the linear range vary for each elem
45、ent with the wavelength, spectrometer, operating conditions and matrix load in the sample solution. If solutions with high salt concentrations (typical for soil extract solutions) are measured, the LOD is substantially increased compared with water samples. DIN ISO 22036:2009-06 9This International
46、Standard refers specifically to the use of inductively coupled plasma - atomic emission spectrometry. Users of this International Standard are advised to operate their laboratories to accepted quality control procedures. Certified Reference Materials (CRM) should be used to establish the amounts of
47、the relevant elements in in-house reference materials. The latter can be used for routine quality control of the procedures given in this International Standard. Results shall be established with control charts, for each element, within the laboratory. No result shall be accepted which falls outside
48、 an agreed limit. Quality control procedures based on widely accepted statistical techniques shall be used to establish such limits, that these are stable and that no long-term drift is occurring. Certified Reference Materials should be used regularly to maintain the integrity of the in-house refere
49、nce materials and, thereby, the quality control system. 5 Interferences 5.1 General The presence of different matrix elements in the sample solution can cause severe interferences, which result in systematic errors of the analyte signal. Special techniques, e.g. background correction, matrix matching of the calibration solution or the standard addition technique, can be used to compensate such interferences. Interferences are classified into spectral and non-spectral interferences. They can be specific for an analyte or non-sp
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1