ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:659.78KB ,
资源ID:717403      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-717403.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(EN 60027-3-2007 en Letter symbols to be used in electrical technology Part 3 Logarithmic and related quantities and their units《电气技术用字母符号 第3部分 对数和有关量及其单位》.pdf)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

EN 60027-3-2007 en Letter symbols to be used in electrical technology Part 3 Logarithmic and related quantities and their units《电气技术用字母符号 第3部分 对数和有关量及其单位》.pdf

1、BRITISH STANDARDBS EN 60027-3:2007Letter symbols to be used in electrical technology Part 3: Logarithmic and related quantities, and their unitsICS 01.060; 01.075; 29.020g49g50g3g38g50g51g60g44g49g42g3g58g44g55g43g50g56g55g3g37g54g44g3g51g40g53g48g44g54g54g44g50g49g3g40g59g38g40g51g55g3g36g54g3g51g4

2、0g53g48g44g55g55g40g39g3g37g60g3g38g50g51g60g53g44g42g43g55g3g47g36g58BS EN 60027-3:2007This British Standard was published under the authority of the Standards Policy and Strategy Committee BSI 2008ISBN 978 0 580 60281 8National forewordThis British Standard is the UK implementation of EN 60027-3:2

3、007. It is identical to IEC 60027-3:2002. It supersedes BS 7998-3:2002 which is withdrawn.The UK participation in its preparation was entrusted to Technical Committee SS/7, General metrology, quantities, units and symbols.A list of organizations represented on this committee can be obtained on reque

4、st to its secretary.This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.Compliance with a British Standard cannot confer immunity from legal obligations.Amendments issued since publicationAmd. No. Date Commentson

5、30 April 2008EUROPEAN STANDARD EN 60027-3 NORME EUROPENNE EUROPISCHE NORM January 2007 CENELEC European Committee for Electrotechnical Standardization Comit Europen de Normalisation Electrotechnique Europisches Komitee fr Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Br

6、ussels 2007 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members. Ref. No. EN 60027-3:2007 E ICS 01.075; 01.060 Supersedes HD 60027-3:2004English version Letter symbols to be used in electrical technology Part 3: Logarithmic and related quantities,

7、 and their units (IEC 60027-3:2002) Symboles littraux utiliser en lectrotechnique Partie 3: Grandeurs logarithmiques et connexes, et leurs units (CEI 60027-3:2002) Formelzeichen fr die Elektrotechnik Teil 3: Logarithmische und verwandte Gren und ihre Einheiten (IEC 60027-3:2002) This European Standa

8、rd was approved by CENELEC on 2006-12-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concernin

9、g such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its

10、own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvi

11、a, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. Foreword The text of the International Standard IEC 60027-3:2002, prepared by IEC TC 25, Quantities and units, and their letter symbols, was app

12、roved by CENELEC as HD 60027-3:2004 on 2003-12-01. This Harmonization Document was submitted to the formal vote for conversion into a European Standard and was approved by CENELEC as EN 60027-3 on 2006-12-01. This European Standard supersedes HD 60027-3:2004. The following date was fixed: latest dat

13、e by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2007-12-01 Annex ZA has been added by CENELEC. _ Endorsement notice The text of the International Standard IEC 60027-3:2002 was approved by CENELEC as a European Standar

14、d without any modification. _ EN 60027-3:2007 2 CONTENTS1 Scope 42 Normative references. 43 Logarithmic quantities 44 Logarithmic ratios of field quantities and power quantities 54.1 Logarithmic ratios of field quantities 54.2 Logarithmic ratios of power quantities74.3 Levels94.4 Additional informat

15、ion on logarithmic ratios of field quantities and powerquantities.105 Logarithmic information-theory quantities116 Other logarithmic quantities 126.1 General .126.2 Logarithmic frequency interval .127 Names, symbols, and definitions.13Annex ZA (normative) Normative references to international public

16、ations with theircorresponding European publications.14EN 60027-3:2007 3 LETTER SYMBOLS TO BE USED IN ELECTRICAL TECHNOLOGY Part 3: Logarithmic and related quantities, and their units1 ScopeThis part of IEC 60027 gives general information about logarithmic and related quantities, andtheir units. Nam

17、es and symbols for logarithmic quantities are given in other parts ofIEC 60027, mainly in part 2, in the context where they belong.2 Normative referencesThe following referenced documents are indispensable for the application of this document.For dated references, only the edition cited applies. For

18、 undated references, the latest editionof the referenced document (including any amendments) applies.IEC 60027-2:2000, Letter symbols to be used in electrical technology Part 2: Telecom-munications and electronicsISO 31-0:1992, Quantities and units Part 0: General principlesISO 31-2:1992, Quantities

19、 and units Part 2: Periodic and related phenomenaISO 31-7:1992, Quantities and units Part 7: AcousticsISO 31-11:1992, Quantities and units Part 11: Mathematical signs and symbols for use inthe physical sciences and technologyISO/IEC 2382-16:1996, Information technology Vocabulary Part 16: Informatio

20、n theory3 Logarithmic quantitiesLogarithmic quantities are quantities defined by means of logarithmic functions. For adefinition of a logarithmic quantity to be complete, the base of the logarithm must bespecified.Depending on the source of the argument of the logarithm, logarithmic quantities may b

21、eclassified as follows:a) logarithmic ratios which are defined by the logarithm of the ratio of two field quantitiesof the same kind or of two power quantities of the same kind, for example attenuationsand gains in telecommunication, where the argument may be the ratio of two electriccurrents or pow

22、ers, and levels in acoustics, where the argument may be the ratio of asound pressure or a sound power to a reference quantity of the same kind;EN 60027-3:2007 4 b) logarithmic quantities, in which the argument is given explicitly as a number, forexample logarithmic information-theory quantities, suc

23、h as decision content, where theargument is a number of mutually exclusive events, and information content, where theargument is the reciprocal of a probability;c) other logarithmic quantities.In the set of logarithmic and related quantities there are also included quantities which are alinear combi

24、nation of logarithmic quantities, or a derivative of a logarithmic quantity, or aquotient of a logarithmic quantity and another quantity, for example attenuation coefficient.The logarithm to any specified base of an argument gives the same information about thesituation under consideration, as does

25、the argument itself. Quantities defined with logarithmsof different bases are proportional to each other, but have different values and thus aredifferent quantities. In a given field of application, only logarithms of one base shall be usedto define logarithmic quantities. Because of the proportiona

26、lity between the logarithms it ispossible to express the numerical values using different bases of the logarithm together withdifferent units. To avoid ambiguities in applications the unit shall be written out explicitly afterthe numerical value in a logarithmic quantity.NOTE 1 In this part of IEC 6

27、0027, complex quantities are denoted by underlining their symbols. However, thisdoes not constitute a compulsory rule in applications (see IEC 60027-1).4 Logarithmic ratios of field quantities and power quantities4.1 Logarithmic ratios of field quantitiesA quantity the square of which is proportiona

28、l to power when it acts on a linear system is herecalled a field quantity, general symbol F.EXAMPLESElectric current, voltage, electric field strength, sound pressure, particle speed, andforce are field quantities.For sinusoidal time-varying field quantities, the ratio of the amplitudes or the root-

29、mean-square values is the argument of the logarithm.For non-sinusoidal field quantities, the root-mean-square value over an appropriate timeinterval to be specified is used. For a periodic quantity, the appropriate time interval is theperiodic time.For logarithmic ratios of field quantities, logarit

30、hms with two different bases are used for thenumerical values. These logarithms are: natural logarithm, symbol ln (or loge), decimal logarithm, symbol lg (or log10).For real field quantity ratios, F1/F2, the following general expressions of a logarithmic ratio,Q(F), expressed in different units are

31、obtained:dBlg20Blg2Npln212121=FFFFFFQF )(1)EN 60027-3:2007 5 Here the neper, symbol Np, is the value of Q(F)when F1/F2= e; and the bel, symbol B is thevalue of Q(F)when F1/F2= 10 . The decibel, symbol dB, is 1 dB = (1/10) B. Hence1 Np = (ln e) Np = 2 (lg e) B = 20 (lg e) dB 8,685 889 dB (2)1 B = 2 (

32、lg 10 ) B = 10 dB = (ln 10 ) Np 1,151 292 Np (3)1 dB = 101B = 101(ln 10 ) Np 0,115 129 2 Np (4)The factor 2 in the numerical value of Q(F)expressed in bels in equation (1) has historicalreasons and is explained in 4.2.Complex notation is frequently used for field quantities, for example in telecommu

33、nicationsand acoustics. The taking of logarithms of complex-quantity ratios is usefully done only withthe natural logarithm. Many other mathematical relations and operations also become simplerif, and only if, the natural logarithm is used. This is seen from the fact that the naturallogarithmic func

34、tion of x2/x1be defined as the integral=21dln12xxxxxxwithout any numerical factors as with other bases.That is why natural logarithms are used in the system of quantities on which the SI is based,i.e. the International System of Quantities (ISQ).NOTE 2 At a plenary meeting of ISO/TC 12, Quantities,

35、units, symbols, conversion factors and conversion tablesin Washington D.C., US, in 1973 with participation of the Chairman and the Secretary of IEC/TC 25 it wasunanimously decided to use the natural logarithm in the system of quantities on which the SI is based, i.e. toconsider the neper, symbol Np

36、as coherent with the SI. This decision has later been adopted by the ComitInternational des Poids et Mesures (CIPM), and the Organisation Internationale de Mtrologie Lgale (OIML).With the quantity Q(F)defined by convention with the natural logarithm, i.e.Q(F)= ln(F1/F2)(5)neper (Np) becomes the cohe

37、rent unit, which can be replaced with one, symbol 1 (see ISO31-2, 2-9).NOTE 3 In general, a quantity definition should be given before the introduction of the corresponding units. Forhistorical reasons, however, the traditional order of presentation is followed in this part of IEC 60027.For practica

38、l applications mainly in telecommunication and acoustics, the sub-multiple decibel(dB) of the bel (B) based on decimal logarithms is in common usage.NOTE 4 In practice, the use of decibel (dB) has prevailed internationally since the ITU decided in 1968 to useonly the decibel. This is in some respect

39、s similar to the fact that the unit degree () is commonly used in practiceinstead of the coherent SI unit radian (rad) for plane angle.In theoretical calculations, neper (Np) for the amplitude together with radian (rad) for thephase angle, result naturally from complex notation and natural logarithm

40、s. Consider forexample a ratio of two complex quantities F1and F2.EN 60027-3:2007 6 )j(21j2j1212121eee=FFFFFF(6)j(lnln212121( +=FFFFQF )(7)EXAMPLEWith the voltages Ve30/2j1=U and Ve3/3j2=U we obtainrad0,524jNp3032rad6jNp10)(ln)eln(10Ve3Ve30lnln6j3jj21+=,/2UUUQ4.2 Logarithmic ratios of power quantiti

41、esA quantity that is proportional to power is called a power quantity, general symbol P. In manycases also energy-related quantities are labelled as power quantities in this context.EXAMPLESActive power, reactive power, and apparent power in electrical technology, acoustic andelectromagnetic power,

42、and corresponding power densities.Since power quantities are related to field quantities, natural logarithms and decimallogarithms are used also for the numerical values of power quantities. Hence, the followinggeneral expressions of a logarithmic ratio of two active powers P1and P2, Q(P), expressed

43、 indifferent units are obtained:dBlg10BlgNpln21212121=PPPPPPQP)(8)Here the neper (Np) is the value of Q(P)when P1/P2= e2; and the bel (B) is the value of Q(P)when P1/P2= 10. The decibel (dB) is 1 dB = (1/10) B. Hence1 Np = 21(ln e2) Np = (lg e2) B = 10 (lg e2) dB 8,685 889 dB (9)1 B = (lg 10) B = 10

44、 dB = 21(ln 10) Np 1,151 292 Np (10)1 dB = 101B = 201(ln 10) Np 0,115 129 2 Np (11)These are the same conversion factors as those obtained in sub-clause 4.1, equations (2) to(4).EN 60027-3:2007 7 With the quantity Q(P)defined by convention with the natural logarithm, i.e.Q(P)= (1/2) ln(P1/P2)(12)nep

45、er (Np) becomes the coherent unit, which can be replaced with one, symbol 1 (see ISO31-2, 2-10).Following the definition of a field quantity, letP1= k1F12(13)P2= k2F22(14)Therefore21212122221121ln21ln21lnln21ln21kkQkkFFFkFkPPQFP+=+=)()(15)In the general case, the relation between Q(P)and Q(F)depends

46、 on k1/k2.In the special case when k1= k2then Q(P)= Q(F).This explains why the factor 1/2 appears in equation (12) and the factors 2, 20, and 1/2appear in the numerical values in the equations (1) and (8), respectively.In electrical technology, the ratio k1/k2is often an impedance or admittance rati

47、o. Therefore,the comparison of values of logarithmic ratios involving field quantities without adequateinformation about the impedance or admittance can be meaningless or misleading.EXAMPLEConsider the complex powers S1and S2at the input (1) and output (2), respectively, of atransmission line.iiiiii

48、iiiiiiiZIZIIZUZUUIUS22=, i = 1, 2whereUiis the voltage phasor;Iiis the current phasor;Zi= Ui/Iiis the impedance, anddenotes the complex conjugate.Thus, the transfer exponent for complex power Swith its real and imaginary parts ASand BS,respectively, becomes:2121212121ln21lnln21lnln21jZZIIZZUUSSBASSS

49、+=+=EN 60027-3:2007 8 The transfer exponent for voltage and the voltage attenuation, respectively, are:21lnUUU= and 21lnReUUAUU= The transfer exponent for electric current and the electric current attenuation, respectively,are:21lnIII= and 21lnReIIAII= Hence2121ln21ln21ZZAZZAIUS+=Thus it is obtained thatAS= AU= AIif, and only if,21ZZ =and thatS= AU= AIif, and only if21ZZ =4.3 LevelsA level, s

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1