ImageVerifierCode 换一换
格式:PDF , 页数:22 ,大小:2.44MB ,
资源ID:721621      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-721621.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(EN 62808-2016 en Nuclear power plants - Instrumentation and control systems important to safety - Design and qualification of isolation devices.pdf)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

EN 62808-2016 en Nuclear power plants - Instrumentation and control systems important to safety - Design and qualification of isolation devices.pdf

1、Nuclear power plants Instrumentation and control systems important to safety Design and qualification of isolation devices BS EN 62808:2016(IEC 62808:2015)BSI Standards PublicationWB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06National forewordThis British Standard is the UK implementation

2、of EN 62808:2016.The UK participation in its preparation was entrusted to TechnicalCommittee NCE/8, Instrumentation, Control any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaisi

3、ng with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agreements of IEC on technical matters express,

4、 as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees

5、 in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Co

6、mmittees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5) IEC itself does not pr

7、ovide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 6) All users should ensure that they have the l

8、atest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, w

9、hether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is

10、 indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC

11、62808 has been prepared by subcommittee 45A: Instrumentation, control and electrical systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation. The text of this standard is based on the following documents: FDIS Report on voting 45A/1004/FDIS 45A/1019/RVD Full information

12、 on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. BS EN 62808:2016 4 IEC 62808:2015 IEC 2015 The committee has decided that the contents of this publ

13、ication will remain unchanged until the stability date indicated on the IEC web site under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be reconfirmed, withdrawn, replaced by a revised edition, or amended. BS EN 62808:2016IEC 62808:2015

14、IEC 2015 5 INTRODUCTION a) Technical background, main issues and organisation of the standard I in Clause 6: to establish design requirements on the selection and application of suitable isolation devices; in Clause 7: to establish requirements on qualification testing done to validate the adequacy

15、of the isolation device design. It is intended that the standard be used by operators of NPPs (utilities), designers of nuclear I these requirements are outside the scope of this standard. 2 Normative references The following documents, in whole or in part, are normatively referenced in this documen

16、t and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60709, Nuclear power plants Instrumentation and control systems important to safety Separat

17、ion IEC TS 61000-6-5, Electromagnetic compatibility (EMC) Part 6-5: Generic standards Immunity for power station and substation environments IEC 61513, Nuclear power plants Instrumentation and control important to safety General requirements for systems IEC 62003, Nuclear power plants Instrumentatio

18、n and control important to safety Requirements for electromagnetic compatibility testing 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. 3.1 barrier device or structure interposed between redundant equipment or circuits important to safety, or be

19、tween equipment or circuits important to safety and a potential source of damage to limit damage to the I however, good engineering practices are followed to prevent the propagation of faults. In cases where Class 2 systems need to take on the aspects of Class 1 systems due to the functions performe

20、d, isolation is applied. An example of this is a Class 2 system performing a Category B function in support of a Class 1 system performing a Category A function to protect against the same fault. Temporary connections for maintenance to systems performing Category A functions without isolation devic

21、es are only permitted provided that they are connected to only a single redundancy at any given time, that they are disconnected after use, and that the system is capable of withstanding a fault introduced through failure or use of the connection. NOTE This standard discusses isolation devices as st

22、and-alone devices which are separate from the equipment performing safety functions. The isolation device may be part of a module or equipment that performs a safety function. In other designs, the isolation device may be contained in several modules (e.g. one part handling rapid transient overvolta

23、ges and the other static voltages). This standard is also applicable to these design variations. 5.2 Isolation characteristics The isolation device shall be capable of providing isolation against the following failure conditions: a) short-circuits between terminals or to ground; b) open circuits; c)

24、 application of the maximum AC or DC potential that could reasonably occur, considering potentials and sources available in both the Class 1 and non-Class 1 systems; and d) electromagnetic and electrostatic interference. If the equipment can generate other signal types in fault conditions, such as a

25、 square wave or other form of oscillating signal in fault conditions, the isolation device shall be capable of providing isolation against such signals. The properties of an isolation device shall include: tolerance of and isolation for the electrical transients defined in IEC TS 61000-6-5; toleranc

26、e and isolation for EMI to IEC TS 61000-6-5; simple physical barriers between close or adjacent terminals or contact groups on relay equipment used for electrical isolation; and prevention of transmission of excessively high or damaging voltages and/or currents. In this context, an assessment shall

27、be done of the maximum credible fault that could be envisaged under normal and faulted conditions and its potential effects on the equipment important to safety when applied to the isolation device terminals of the circuit of lesser safety class. BS EN 62808:2016 10 IEC 62808:2015 IEC 2015 Precautio

28、ns are also taken to minimise the possibility that failure in a non-Class 1 system causes spurious or premature actuation of a Category A function. 5.3 Actuation priority Where plant equipment that is controlled by a Class 1 system is also controlled by a lower class system, devices are provided whi

29、ch ensure priority of the Class 1 system actions over those of the lower class systems. Failures of, or normal actions by, the lower class system cannot interfere with the Category A functions under plant conditions requiring success of those Category A functions. The equipment performing the priori

30、ty function is classified as Class 1. The circuit that provides the required isolation could be within the same system, or may be in other systems. Failures and mal-operations in the non-Class 1 systems cannot cause a change in response, drift, accuracy, sensitivity to noise, or other characteristic

31、s of the Class 1 system which might impair the ability of the system to perform its safety functions. Where plant equipment that is controlled by a Class 2 or 3 system is also controlled by signals from a lower class system, failures, or normal actions by the lower class system cannot prevent the hi

32、gher class system from performing its function. Where signals are extracted from Class 2 or 3 systems for use in lower class systems, isolation may not be required; however, good engineering practices are followed to prevent the propagation of faults. In cases where Class 2 systems need to take on t

33、he aspects of Class 1 systems due to the functions performed (i.e. Category A functions), isolation is used. 6 Isolation device design requirements 6.1 Requirements on isolation device application 6.1.1 Isolation device power Isolation devices are classified as part of the safety system and are powe

34、red in accordance with the criteria of IEC 61513 if a power supply is necessary for the function. The power supply of the isolation device shall not be required for the device to perform its isolation function. 6.1.2 Maximum credible fault Maximum credible fault (MCF) requirements shall be establish

35、ed by analysis of neighbouring circuits that are credible sources of the fault, either through inadvertent application from human error or through a fault or failure postulated to occur that involves proximate circuits, cabling, or terminations (e.g., a “hot short” from an adjacent conductor). The c

36、ircuits that shall be analyzed depend on how the isolation device is used. The circuits could be within the same system, or may be in other systems. The highest voltage to which the faulted side of the isolation device maybe exposed to shall determine the minimum voltage level that the device shall

37、withstand. This voltage shall be applied across the faulted side terminals, and between the faulted side terminals and ground (see Figure 1). Transient voltages that may appear in the faulted side shall also be considered. Surge waveforms and characteristics shall be defined for the worst-case condi

38、tions expected at the installation. BS EN 62808:2016IEC 62808:2015 IEC 2015 11 Figure 1 Application of maximum credible fault The MCF voltage shall be the highest AC or DC voltage present in an enclosure containing the conductors of the faulted side circuit of the isolation device, or in any proxima

39、te cable raceway which may collapse on to the raceway containing the lower class circuit of the isolation device. Where grounded metallic barriers separate the isolated circuit from higher voltages, those voltages may be excluded from consideration of the MCF provided that the barriers and grounding

40、 measures are designed to withstand the design basis hazards (induced vibrations due to design basis earthquakes or air plane crash, fire, etc.) for the plant. In establishing the MCF voltage and current, the analysis shall include the consequences of flooding or fire causing a fault voltage to be i

41、ntroduced on a signal line from a proximate circuit or cable. The available fault current for a direct short to ground shall be determined for each MCF source. 6.1.3 Energy limiting devices Energy limiting devices (e.g. fuses for current or suppressors for voltage) may be used to limit the fault ene

42、rgy that must be dissipated in the isolation device or which may be available to be transferred to the protected circuits. In such cases, the energy limiting devices shall be considered to be part of the isolation device, even if they are separately packaged. Effective surveillance procedures shall

43、be implemented to verify during plant operation that the energy limiting devices are properly in place and capable of performing their claimed role. 6.2 Requirements on isolation device design 6.2.1 Basic design requirements The design of isolation devices conforms to IEC 61513 for: a) independence

44、of redundant safety divisions, and b) independence between protection and control systems. MCF MCF MCF Protected system Faulted system Isolation device for signal exchange Protected side Faulted side IEC BS EN 62808:2016 12 IEC 62808:2015 IEC 2015 The isolation device shall include design features f

45、or which credit is taken (e.g., surge protectors or barriers) and shall identify the application limits of the device. 6.2.2 Postulated faults The device shall be designed for postulated electrical faults or failures. The impact on the protected side for each fault shall be determined. As a minimum,

46、 the following faults shall be defined on the faulted side of the isolation device (see Figure 2): (a) short circuit to supply voltage if the isolation device is powered from the faulted side; (b1) short circuit between the faulted side terminals; (b2) short circuit between each faulted side termina

47、l and ground; (c) open circuit of faulted side; (MCF) MCF between each faulted side terminal and ground; (MCF) MCF between faulted side terminals. Figure 2 Application of postulated fault The specified MCF shall equal or exceed the application requirements. The device design shall accommodate the fa

48、ult voltage and current waveforms and characteristics defined for the application. Appropriate industry standards shall be used as a basis for establishing the fault-transient exposure level (e.g. IEC TS 61000-6-5 or IEC 62003). The testing shall use the MCF as a basis for the test levels. 6.2.3 Phy

49、sical component arrangement The physical arrangement of components in the isolation device shall be configured to prevent, in the event of failure, the effects of shattered parts or material (e.g., solder spatter), fire, and smoke from breaching the isolation barrier. Circuit terminals shall be arranged to permit the IEC 60709 specified separation distance between conductors associated with functions of different categories to be established as soon as practical. Minimum separation requirements do not apply for

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1