ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:33.82KB ,
资源ID:750111      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-750111.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(FORD WSE-M4G323-A6-2010 SEALANT SILICONE RUBBER OXIME CURED VERY HIGH VISCOSITY TO BE USED WITH FORD WSS-M99P1111-A (Shown on FORD WSE-M4G323-A1)《超高粘度的肟固化型硅橡胶密封剂 与标准FORD WSS-M99.pdf)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

FORD WSE-M4G323-A6-2010 SEALANT SILICONE RUBBER OXIME CURED VERY HIGH VISCOSITY TO BE USED WITH FORD WSS-M99P1111-A (Shown on FORD WSE-M4G323-A1)《超高粘度的肟固化型硅橡胶密封剂 与标准FORD WSS-M99.pdf

1、 ENGINEERING MATERIAL SPECIFICATIONDate Action Revisions 2010 01 06 Revised A6 - Changes made to 3.4 and 3.9 A. Reaume, NA 2006 06 12 Revised Para 3.0 inserted; para 3.1, 3.2, 3.3, 3.17, 3.18 and 4 deleted Para 3.7, 3.10 and 3.13 revised; Corrected numbering 3.12 A. Reaume 1991 11 05 NEO1E101 Releas

2、ed E. J. Duda Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 1 of 8 SEALANT, SILICONE RUBBER, ACETOXY CURED, WSE-M4G323-A1 LOW VISCOSITY SEALANT, SILICONE RUBBER, ACETOXY CURED, WSE-M4G323-A2 MEDIUM VISCOSITY SEALANT, SILICONE RUBBER, ACETOXY CURED, WSE-M4G323-A3

3、HIGH VISCOSITY SEALANT, SILICONE RUBBER, OXIME CURED, WSE-M4G323-A4 LOW VISCOSITY SEALANT, SILICONE RUBBER, OXIME CURED, WSE-M4G323-A5 HIGH VISCOSITY SEALANT, SILICONE RUBBER, OXIME CURED, WSE-M4G323-A6 VERY HIGH VISCOSITY SEALANT, SILICONE RUBBER, OXIME CURED, WSS-M4G323-A7 VERY HIGH VISCOSITY SEAL

4、ANT, SILICONE RUBBER, OXIME CURED, WSS-M4G323-A8 HIGH VISCOSITY 1. SCOPE The material defined by these specifications is an one component thixotropic spreadable silicone rubber based adhesive/sealant. It is capable of being pumped, metered and distributed into a gasket profile. These materials are r

5、eady for use as received, requiring no catalyst or heat cure. 2. APPLICATION These specifications were released originally for materials used for formed-in-place gaskets such as engine oil pan, rocker cover, cylinder block or oil pump, where high operating temperatures (up to 204 C) may be encounter

6、ed. WSE-M4G323- A1 Low viscosity, low modulus acetoxy cured material with medium assembly time and very good adhesion and joint movement on clean and oiled panels of steel to aluminum and aluminum to aluminum. A2 Medium viscosity, medium modulus acetoxy cured material with good blowout resistance, m

7、edium assembly time, good oil and coolant resistance. ENGINEERING MATERIAL SPECIFICATIONWSE-M4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 2 of 8 A3 High viscosity, high modulus acetoxy cured material with excellent blowout resistance

8、, short assembly time, good high temperature resistance with excellent adhesion and joint movement on clean and oiled aluminum to aluminum. A4 Low viscosity, low modulus oxime cured material with no blowout resistance and long assembly time and good adhesion between steel to aluminum and aluminum to

9、 aluminum on clean and oiled panels. This material has very poor resistance to coolant/water and must not be used for these applications. A5 Very high viscosity, low modulus oxime cured material with very good blowout resistance and long assembly time, good oil resistance and excellent joint movemen

10、t on clean and oiled steel to aluminum and aluminum to aluminum panels. This material has very poor resistance to coolant/water and must not be used for these applications. A6 Very high viscosity, medium modulus, oxime cured material with excellent blowout resistance and long assembly time, good oil

11、 resistance and excellent adhesion and joint movement on oiled steel and aluminum panels. This material has very poor resistance to coolant/water and must not be used for these applications. A7 Very high viscosity, medium modulus, oxime cured material with excellent blowout resistance and very long

12、assembly time, good oil resistance and excellent adhesion and joint movement on oiled steel and aluminum panels. This material has very poor resistance to coolant/water and must not be used for these applications. A8 High viscosity, high modulus, oxime cured material with very good blowout resistanc

13、e and low assembly time, dependable oil resistance, good adhesion and joint movement on oiled steel and aluminum panels. This material has good resistance to coolant/ water and is suitable for use in automatic transmissions. 3. REQUIREMENTS Material specification requirements are to be used for init

14、ial qualification of materials. 3.0 STANDARD REQUIREMENTS FOR PRODUCTION MATERIALS Material suppliers and part producers must conform to the Companys Standard Requirements For Production Materials (WSS-M99P1111-A). 3.4 SPECIFIC GRAVITY (ASTM D 792, Method A) A1 A2 A3 A4 A5 A6 A7 A8 1.04- 1.06- 1.06-

15、 1.30- 1.28- 1.30- 1.30- 1.44- 1.09 1.10 1.10 1.37 1.35 1.41 1.37 1.49 ENGINEERING MATERIAL SPECIFICATIONWSE-M4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 3 of 8 3.5 EXTRUSION RATE, s A1 A2 A3 A4 A5 A6 A7 A8 40- 200- 320- 30- 700- 14

16、00- 1400- 500- 150 390 900 150 1700 2400 2600 1600 Test Method: Time to dispense 50 cc through a stainless steel nozzle with a 3.2 +/- 0.13 mm orifice and 50 +/- 0.13 mm in length at 448 kPa pressure using a #250 Semco gun and 170 g PE cartridge assembly. Start the test by dispensing 10 g and then t

17、iming the next 50 cc. To convert from g to cc, multiply by specific gravity. 3.6 BLOW RESISTANCE, s, min (FLTM BV 126-01, 14 kPa pressure, cured for 30 minutes at 23 +/- 2 C, 50% R.H., 1 mm and 1.5 mm gap, 4.0 mm flange) Gap, 1 mm 15 120 300 0 100 100 110 80 Gap, 1.5 mm 10 20 300 0 60 100 110 20 Tak

18、e 60 s to assemble and test 30 minutes after assembly. 3.7 CURE RATE (Assembly Time), minutes, range (FLTM BV 127-02 or FLTM BV 125-01, max time at which both surfaces have a continuous strip of sealant at 50 +/- 5% relative humidity and 23 +/- 2 C) 5 18 5 10 2 14 12 30 5 20 7 24 120 300 5 - 20 3.8

19、TOTAL SILICONE VOLATILES, max (FLTM AV 102-01, cured 24 h at 23 +/- 2 C and 50 +/- 5% R.H.) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 ENGINEERING MATERIAL SPECIFICATIONWSE-M4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 4 of 8 3.9 CURED PROPERTI

20、ES Properties determined after curing the sealant for 168 +/- 2 h at 23 +/- 2 C and 50 +/- 5% relative humidity on a 2.0 mm cross section. Original Tensile Strength, MPa, min (ASTM D 412, Die C) A1 A2 A3 A4 A5 A6 A7 A8 2.0 2.6 2.5 1.8 1.2 1.7 1.8 2.8 Elongation, %, min 300 300 210 400 350 400 450 12

21、0 Modulus, 100%, range 0.5- 0.9- 1.1- 0.4- 0.4- 0.5 0.5 1.9- 1.2 1.6 1.7 1.1 1.1 min. min. 2.6 Durometer Hardness, range (ASTM D 2240, Shore A, instantaneous) 26 38 38 48 44 56 31 45 27 40 31 52 35 48 45 - 65 3.10 OIL IMMERSION (ASTM D 471, 168 h at 150 +/- 2 C, IRM 902 oil, after cure per para 3.9)

22、 Tensile Strength Change, %, max - 24 - 15 - 25 - 20 - 35 - 28 - 28 - 30 Elongation Change, %, max - 22 - 18 - 20 - 28 - 10 - 28 - 30 + 50 Durometer Change, max - 10 -14 - 12 - 16 - 10 - 15 - 14 - 10 Volume Change, %, max + 12 + 14 + 13 + 9 - 13 + 14 + 12 + 20 ENGINEERING MATERIAL SPECIFICATIONWSE-M

23、4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 5 of 8 3.11 HIGH TEMPERATURE RESISTANCE (ASTM D 573, 168 h at 175 +/- 2 C, after proper cure per para 3.9) Tensile Strength Change, %, max A1 A2 A3 A4 A5 A6 A7 A8 - 20 - 8 - 8 - 10 - 10 +

24、30 to + 100 + 50 - 10 Elongation Change, %, max - 25 - 35 - 10 - 45 - 15 - 60 - 50 - 50 Durometer Change, max +/- 10 +/- 8 +/- 10 +/- 10 - 5 to + 18 + 30 + 10 + 10 3.12 IMMERSION IN THREE CURRENTLY APPROVED TRANSMISSION FLUIDS OF AFFECTED MODEL YEAR (ISO 1817/ASTM D 471, 168 h at 150 +/- 2 C, see pa

25、ra 5.1) 3.12.1 Hardness Change, points, max - 30 3.12.2 Tensile Strength Change, %, max - 35 3.12.3 Elongation Change, %, max + 50 3.12.4 Volume Change, %, max + 45 3.12.5 Visual Evaluation No surface tackiness or cracks when folded flat against itself. 3.13 LAP SHEAR ADHESION let flash for 15 minut

26、es. 2024 Alclad Aluminum to 1010 Steel . Adhesion, MPa, min 0.5 0.4 0.3 1.0 0.3 1.0 1.0 0.6 . Joint Movement, mm, min 2.0 2.0 1.0 6.0 3.0 6.0 6.0 1.1 2024 Alclad Aluminum to Aluminum . Adhesion, MPa, min 0.7 0.4 0.6 1.2 0.9 1.2 1.2 0.7 . Joint Movement, mm, min 3.0 3.0 2.5 6.0 3.0 6.0 6.0 1.1 ENGINE

27、ERING MATERIAL SPECIFICATIONWSE-M4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 7 of 8 3.13.2 Immersion in IRM 902 (168 h at 150 +/- 2 C) CLEAN PANELS 2024 Alclad Aluminum to 1010 Steel . Adhesion, MPa, min A1 A2 A3 A4 A5 A6 A7 A8 0.8

28、0.4 0.5 0.9 0.3 0.8 1.4 0.9 . Joint Movement, mm, min 3.0 3.0 3.0 4.5 3.0 4.5 4.5 1.6 2024 Alclad Aluminum to Aluminum . Adhesion, MPa, min 0.8 0.7 1.2 1.0 0.4 0.7 1.4 1.5 . Joint Movement, mm, min 4.0 4.0 3.0 4.5 3.0 4.5 4.5 2.3 OILED PANELS: Dip panels in a solution of 5% ASTM 902 oil in toluene;

29、let flash for 15 minutes. 2024 Alclad Aluminum to 1010 Steel . Adhesion, MPa, min 0.5 0.2 0.3 0.9 0.3 0.7 0.9 1.0 . Joint Movement, mm, min 2.5 2.5 1.0 4.8 3.0 4.5 4.5 1.7 2024 Alclad Aluminum to Aluminum . Adhesion, MPa, min 1.0 0.7 1.0 0.9 0.3 0.7 0.7 1.4 . Joint Movement, mm, min 3.0 4.5 3.0 5.0

30、3.0 4.5 4.8 2.1 ENGINEERING MATERIAL SPECIFICATIONWSE-M4G323-A1/A6 WSS-M4G323-A7/A8 Printed copies are uncontrolled Copyright 2010, Ford Global Technologies, LLC Page 8 of 8 3.14 STORAGE STABILITY, min 12 months (From date of receipt at Ford Motor Company) When stored in sealed unopened containers o

31、ut of direct sunlight at ambient temperatures between 10 and 27 C. The supplier must label each container to indicate expiration date of the material and production usage beyond expiration date is not permitted. Containers should always be kept sealed when not in use. After opening, a plug of cured

32、material may form across the container opening during storage. This may easily be removed and does not affect the remaining contents. 3.15 QUALITY The material shall be of uniform quality, free from foreign materials and properties detrimental to normal production use. 3.16 NON-INTERCHANGEABILITY OF

33、 MATERIALS Only approved materials all from the same production source shall be used in conjunction with one another. 5. GENERAL INFORMATION The information given below is provided for clarification and assistance in meeting the requirements of these specifications. 5.1 For information on currently

34、approved service fluids and other material required for use in these specifications contact: Materials Laboratory GB-15/GM-D01-D Transmission & Axle Engineering Car Engineering Materials & Fasteners Engineering Ford Motor Co. Ltd Ford Motor Company Research & Engineering Center 36200 Plymouth Road Laindon, Basildon Box DME-14 Essex SS15 6EE, England Livonia, MI 48151, U.S.A. Product Engineering Office Ford Motor Co. of Australia Princes Highway, Norlane Victoria 3214, Australia

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1