ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:91.11KB ,
资源ID:752664      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-752664.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(FORD WSS-M2A175-A3-2015 ALUMINUM ALLOY SHEET HEAT TREATABLE STRUCTURAL HIGH STRENGTH LOW COPPER TO BE USED WITH FORD WSS-M99P1111-A (Shown on FORD WSS-M2A175-A1).pdf)为本站会员(amazingpat195)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

FORD WSS-M2A175-A3-2015 ALUMINUM ALLOY SHEET HEAT TREATABLE STRUCTURAL HIGH STRENGTH LOW COPPER TO BE USED WITH FORD WSS-M99P1111-A (Shown on FORD WSS-M2A175-A1).pdf

1、 ENGINEERING MATERIAL SPECIFICATION Date Action Revisions Rev 03 2015 02 02 Editorial See Summary of Revisions C. Mracna, NA 2014 10 30 Revised Added T52; See Summary of Revisions C. Mracna, NA 2013 11 06 Released C. Mracna,NA Controlled document at www.MATS Copyright 2015, Ford Global Technologies,

2、 LLC Page 1 of 8 ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A1 HIGH STRENGTH, THIN GAGE NOT TO BE USED FOR NEW DESIGN ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A2 HIGH STRENGTH, THICK GAGE ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A3 HIGH ST

3、RENGTH, LOW COPPER ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A4 ENERGY ABSORPTION ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A5 OVERAGED ALUMINUM ALLOY, SHEET, HEAT TREATABLE, STRUCTURAL, WSS-M2A175-A6 AIR QUENCHED, OVERAGED 1. SCOPE The materials defined by th

4、ese specifications are for direct cast, 6000 series, heat treatable aluminum sheet. Ford Motor Company may, at its option and in agreement with the local or regional supplier, define additional and/or restricted technical delivery requirements such as mechanical properties, forming characteristics,

5、and/or pretreatment for a specific grade and/or part. The defined requirements shall be mandatory and no characteristics shall conflict with these engineering specifications. 2. APPLICATION These global specifications were released originally for stamped automotive body parts. 2.1 LIMITATIONS The yi

6、eld strength of the material in the part after the paint baking process is a function of the amount of forming deformation and the time-temperature profile during the paint baking process. The mechanical property values shown in Table 2 apply only to the listed condition; individual parts will have

7、different properties, depending on specific processing in the vehicle manufacturing plants. 2.2 DEFINITIONS Variant A1 is a structural alloy with gage thicknesses less than or equal to 1.5 mm, typically applied to non-visible structural parts (Class 3) where high strength and modest ductility are re

8、quired. This variant is applicable to parts that may be susceptible to intergranular corrosion or stress corrosion cracking, or parts that will be heat treated after forming. ENGINEERING MATERIAL SPECIFICATION WSS-M2A175-A1/A2/A3/A4/A5/A6 Copyright 2015, Ford Global Technologies, LLC Page 2 of 9 Var

9、iant A2 is a structural alloy with gage thicknesses of 0.8 to 4.0 mm, typically applied to non-visible structural parts (Class 3) where high strength and modest ductility are required. This variant is applicable to parts that may be susceptible to intergranular corrosion or stress corrosion cracking

10、, or parts that will be heat treated after forming. Variant A3 is a low copper, structural alloy with gage thicknesses 0.8 to 4.0 mm, typically applied to non-visible structural parts (Class 3) where high strength and modest ductility are required. This variant is applicable to parts that may be sus

11、ceptible to intergranular corrosion or stress corrosion cracking, or parts that will be heat treated after forming. Variant A4 is an energy absorption alloy, typically applied to non-visible structural parts (Class 3) where controlled in-service deformation behavior and thermal stability are desired

12、. Variant A5 is a high formability, structural alloy with gage thicknesses greater than 1.5mm, typically applied to non-visible structural parts (Class 3). This variant is applicable for parts having design features that require the material to be stamped in O temper and subsequently require heat tr

13、eatment using a water quench to a strengthened T72 temper. Variant A6 is a high formability, structural alloy with gage thicknesses greater than 1.5mm, typically applied to non-visible structural parts (Class 3). This variant is applicable for parts having design features that require the material t

14、o be stamped in O temper and subsequently require heat treatment using an air quench to a strengthened T52 temper. T52 is an air quench heat treatment used to maintain as-stamped dimensional tolerances. 3. REQUIREMENTS 3.1 STANDARD REQUIREMENTS FOR PRODUCTION MATERIALS Material suppliers and part pr

15、oducers must conform to the Companys Standard Requirements for Production Materials (WSS-M99P1111-A). Material suppliers and part producers must conform to the Companys Quality System Requirements. In order for materials to comply with the requirements of the material specification they shall be sou

16、rced from suppliers listed in the Ford Motor Company Approved Source List, ASL (See also paragraph 4.2). 3.2 CHEMICAL COMPOSITION (ASTM E34, ASTM E716, ASTM E1251) 3.2.1 Chemical Composition The upper and lower limits of chemical composition of the controlled elements shall be established by the sup

17、plier by any of the listed methods and included in the Suppliers Control Plan. In case of dispute, the referee method shall be ASTM E34. The tabulated upper and lower limits of chemical composition for each variant may not agree with those listed in the Aluminum Association “Teal Sheets.“ The values

18、 in Table 1 take precedence. Ladle analyses shall be provided as part of the initial material source approval process in a format suitable for upload into the Ford Material Database. ENGINEERING MATERIAL SPECIFICATION WSS-M2A175-A1/A2/A3/A4/A5/A6 Copyright 2015, Ford Global Technologies, LLC Page 3

19、of 9 Table 1: Ladle Chemical Composition (weight percent maximum, unless shown as a range or a minimum; balance Al) A1/A2 A3 A4 A5/A6 Si 0.55 0.95 0.50 1.00 0.30 - 0.60 0.45-0.75 Fe 0.30 0.30 0.30 0.60 Cu 0.50 - 0.80 0.20 0.20 0.20-0.30 Mn 0.30 0.15 0.15 0.10 Mg 0.55 - 0.95 0.40 - 0.80 0.40 - 0.70 0

20、.75-1.00 Cr 0.10 0.05 0.05 0.05-0.25 Zn 0.10 0.10 0.10 0.10 Ti 0.10 0.10 0.10 0.10 Others (each) 0.05 0.05 0.05 0.05 Others (total) 0.15 0.15 0.15 0.15 3.3 MECHANICAL PROPERTIES (ASTM E8M, ASTM B557M, 50 mm gauge length; ASTM E517, FLTM BB 114-02) Mechanical properties are valid in the longitudinal,

21、 transverse, and diagonal directions, except as noted. Certification of ongoing production material shall be in accordance with regional and/or local requirements. In cases of dispute, test data obtained from supplier retained samples that have been stored under environmentally controlled conditions

22、 will serve as the arbitrator. The samples shall be tested at a third party laboratory. Mechanical properties shall be valid for a period of between thirty (30) and ninety (90) days following solution heat treatment unless otherwise noted. For the determination of mechanical properties, the material

23、 cross sectional area shall be defined as that of the aluminium alloy; contribution of any surface treatments to the calculated cross-sectional area used for stress calculations is neglected. The test specimen geometry and orientation relative to the rolling direction are to be established locally t

24、o certify on going production material. Yield Strength is defined as 0.2% proof stress. Yield strength and ultimate tensile strength shall be measured per ASTM B557M. Uniform elongation shall be measured per ASTM E8, Sec. 7.9.3 or 7.9.3.2. In cases of dispute, section 7.9.3 shall be the umpire metho

25、d. Plastic Strain Ratio (r-value) is defined for a specific test direction with respect to the rolling direction. It is measured at 10% elongation. Normal anisotropy (r-bar, ravg, or rm) is calculated from the individual r-values per ASTM E517. Yield Strength (T81, T82, T52 Revised 6HS3 Sec. 3.3.1 Added clarifying paragraph to Lot Release Limits Sec. 4.4 Revised typical mechanical property values

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1