1、ENGINEERING MATERIAL SPECIFICATION Date Action Revisions Rev 02 2014 10 27 Editorial See Summary of Revisions C. Mracna, NA 2014 06 27 Revised See Summary of Revisions C. Mracna, NA 2013 11 06 Released C. Mracna, NA Controlled document at www.MATS Copyright 2014, Ford Global Technologies, LLC Page 1
2、 of 6 ALUMINUM ALLOY, SHEET, NON-HEAT TREATABLE, REDUCED LDERING WSS-M2A176-A1 ALUMINUM ALLOY, SHEET, NON-HEAT TREATABLE, STRUCTURAL WSS-M2A176-A2 1. SCOPE The materials defined by these specifications are for direct cast, 5000 series, non-heat treatable aluminum sheet. Ford Motor Company may, at it
3、s option and in agreement with the local or regional supplier, define additional and/or restricted technical delivery requirements such as mechanical properties, forming characteristics, and/or pretreatment for a specific grade and/or part. The defined requirements shall be mandatory and no characte
4、ristics shall conflict with these engineering specifications. 2. APPLICATION These Global specifications were released originally for stamped automotive body parts. 2.1 LIMITATIONS Variant A1 defined by this specification is intended for sheet metal gage thicknesses of less than or equal to 2.0 mm.
5、Variant A2 is intended for sheet metal gage thicknesses of 1.0 to 4.0 mm. 2.2 DEFINITIONS Both variants of this specification are suitable for Class 2 and Class 3 applications only. Variant A1 is a high formability alloy with controlled Lders lines. It is suitable for applications that do not experi
6、ence exposure to temperatures above 150C due to susceptibility to intergranular corrosion (e.g. door inner panels). Variant A2 is a general structural alloy suitable for all non-visible applications. 3. REQUIREMENTS 3.1 STANDARD REQUIREMENTS FOR PRODUCTION MATERIALS Material suppliers and part produ
7、cers must conform to the Companys Standard Requirements for Production Materials (WSS-M99P1111-A). Material suppliers and part producers must conform to the Companys Quality System Requirements. In order for materials to comply with the requirements of the material specification they shall be source
8、d from suppliers listed in the Ford Motor Company Approved Source List, ASL (See also paragraph 4.2). ENGINEERING MATERIAL SPECIFICATION WSS-M2A176-A1/A2 Copyright 2014, Ford Global Technologies, LLC Page 2 of 6 3.2 CHEMICAL COMPOSITION (ASTM E34, ASTM E716, ASTM E1251) 3.2.1 Chemical Composition Th
9、e upper and lower limits of chemical composition of the controlled elements shall be established by the supplier by any of the listed methods and included in the Suppliers Control Plan. In case of dispute, the referee method shall be ASTM E34. The tabulated upper and lower limits of chemical composi
10、tion for each variant may not agree with those listed in the Aluminum Association “Teal Sheets.“ The values in Table 1 take precedence. Ladle analyses shall be provided as part of the initial material source approval process in a format suitable for upload into the Ford Material Database. Table 1: L
11、adle Chemical Composition (weight percent maximum, unless shown as a range or a minimum, balance Al) 3.3 MECHANICAL PROPERTIES (ASTM E6, ASTM E8M, ASTM B557M, 50 mm gauge length; ASTM E517) Mechanical properties are valid in the longitudinal, transverse, and diagonal directions, except as noted. Cer
12、tification of ongoing production material shall be in accordance with regional and/or local requirements. In cases of dispute, test data obtained from supplier retained samples that have been stored under environmentally controlled conditions will serve as the arbitrator. The samples shall be tested
13、 at a third party laboratory. For the determination of mechanical properties, the material cross sectional area shall be defined as that of the aluminium alloy; contribution of any surface treatments to the calculated cross-sectional area used for stress calculations is neglected. The test specimen
14、geometry and orientation relative to the rolling direction are to be established locally to certify ongoing production material. Yield Strength is defined as 0.2% proof stress. Yield strength and ultimate tensile strength shall be measured per ASTM B557M. Uniform elongation shall be measured per AST
15、M E8, Sec. 7.9.3 or 7.9.3.2. Alternatively, the tensile specimen design may comply with ASTM E517, Section 7.2.1. In cases of dispute, ASTM E8, Sec. 7.9.3 shall be the umpire method unless alternative methods of uniform elongation calculation, filtering, or data smoothing algorithms have been approv
16、ed by Ford Materials Engineering. Any approved alternative methods or tensile specimen design shall be identified in the suppliers Control Plan. A1 A2 Si 0.20 0.25 Fe 0.35 0.35 Cu 0.10 0.10 Mn 0.20 0.50 0.50 Mg 4.20 5.00 2.90 3.50 Cr 0.10 0.10 Zn 0.10 0.10 Ti 0.10 0.10 Others (each) 0.05 0.05 Others
17、 (total) 0.10 0.10 ENGINEERING MATERIAL SPECIFICATION WSS-M2A176-A1/A2 Copyright 2014, Ford Global Technologies, LLC Page 3 of 6 Plastic Strain Ratio (r-value) is defined for a specific test direction with respect to the rolling direction. It is measured at 10% elongation. Normal anisotropy (r-bar,
18、ravg, or rm) is calculated from the individual r-values per ASTM E517. Table 2: Mechanical Properties (minimum, unless shown as a range or maximum) A1 A2 Yield Strength, MPa (0.2% offset)105 - 155 100 - 140 Ultimate Tensile Strength, MPa 250 - 300 215 - 270 Uniform Elongation, % 20 18 ravg0.60 0.60
19、3.3.1 Lot Release Limits The supplier shall propose initial lot release values that will be used prior to addition to the ASL. The final lot release requirements shall be agreed upon between the supplier and Ford Materials Engineering during initial mechanical property testing and included into the
20、source approval. For any lot release property that is reported as an average of three measured directions (L, D, & T), the individual directional measurements shall also be reported on the lot release certification. 3.3.2 Ongoing Mechanical Property Testing For ongoing production, the testing freque
21、ncy shall be agreed upon annually between the supplier, Ford Product Development and Ford STA. It will include all of the properties listed in Table 2 and be available upon request. 3.4 DIMENSIONS AND DIMENSIONAL TOLERANCES 3.4.1 Thickness and Thickness Tolerance Unless otherwise specified by Ford M
22、otor Company on the Engineering Drawing or Purchase Order, the tolerance for thickness shall comply with ESBAU5-1N260-(*) (*) latest level 3.4.2. Other Dimensional Tolerances Length, width, flatness, camber, out-of-square, mass and other tolerances for the material as delivered by the aluminum alloy
23、 supplier are defined by the relevant local manufacturing activity. Examples include ANSI H35.2 and EN 485-4. 3.5 FORMABILITY In conjunction with the material supplier and Ford Materials Engineering, the affected local manufacturing activity shall, as part of the initial material source approval pro
24、cess, approve the formability of this material by means of laboratory test(s), manufacturing trial(s), and/or another mutually acceptable alternative, using the equipment and methods that are proposed for production. If needed to enable the fabrication of a specific component, restricted tolerances
25、and/or additional material property requirements (i.e., the “quality level“ of the aluminum alloy) shall be developed by the affected manufacturing activity and the aluminum alloy supplier. Examples include, but are not limited to: restricted yield strength range, restricted gauge tolerance, and spe
26、cified surface roughness. ENGINEERING MATERIAL SPECIFICATION WSS-M2A176-A1/A2 Copyright 2014, Ford Global Technologies, LLC Page 4 of 6 The “quality level“ of the aluminum alloy for a specific component: shall not conflict with specified requirements in paragraph 3 of this Engineering Material Speci
27、fication shall be described in detail by the local manufacturing activity shall be a mandatory extension of these Engineering Material Specifications Acceptance of subsequent orders by the aluminum alloy supplier for a given component at the agreed upon quality level implies that all aluminum alloy
28、supplied will be of a comparable quality level and will form that part satisfactorily as defined and recorded by the manufacturing activity. 3.6 JOINABILITY (FLTM BB 113-07, FLTM BV 101-07, SAE J1523, ISO 4587) In conjunction with the material supplier and Ford Materials Engineering, the affected lo
29、cal manufacturing activity shall, as part of the initial material source approval process, approve the joinability (e.g., resistance spot welding, riveting, adhesive bonding) of this material by means of laboratory test(s), manufacturing trial(s), and/or another mutually acceptable alternative, usin
30、g the equipment and methods that are proposed for production. If needed to enable the fabrication of a specific component, restricted tolerances and/or additional material property requirements (i.e., the “quality level“ of the aluminum alloy) shall be developed by the affected manufacturing activit
31、y and the aluminum alloy supplier. Examples include, but are not limited to: restricted chemical composition, restricted gauge tolerance, and specified surface condition. The “quality level“ of the aluminum alloy for a specific component: shall not conflict with specified requirements in paragraph 3
32、 of this Engineering Material Specification shall be described in detail by the local manufacturing activity shall be a mandatory extension of these Engineering Material Specifications Acceptance of subsequent orders by the aluminum alloy supplier for a given component at the agreed upon quality lev
33、el implies that all aluminum alloy supplied will be of a comparable quality level and can be joined satisfactorily as defined and recorded by the manufacturing activity. 3.7 SURFACE APPEARANCE, CONDITION, AND SURFACE ROUGHNESS 3.7.1 Surface Classification Surface appearance shall be defined as Class
34、 3: A Class 3 surface shall be specified for parts of the vehicle that are concealed during normal use. 3.7.2 Incoming Lubricant Products coated with a designated mill-applied lubricant shall comply with performance specification WSS-M9G24-A1. 3.7.3 Mill-applied pretreatments shall comply with perfo
35、rmance specification WSS-M10P12-B1 and shall be applied in conjunction with the compatible mill-applied lubricant defined in paragraph 3.7.2. 3.7.4 Surface Roughness The surface roughness and associated parameters for a given component are to be defined and recorded, if necessary, by the regional ma
36、nufacturing activity. ENGINEERING MATERIAL SPECIFICATION WSS-M2A176-A1/A2 Copyright 2014, Ford Global Technologies, LLC Page 5 of 6 3.7.5 Final Product Identification Unless an alternate method is agreed upon by the aluminum supplier and the manufacturing activity, the final product in coil form (in
37、dividual coil, up to a 2-mult from a master coil at least) shall comply with ESDU5A-1B328-(*). (*) latest level 3.8 PAINTABILITY In conjunction with the material supplier and Ford Materials Engineering, the affected local manufacturing activity shall, as part of the initial material source approval
38、process, approve the paintability (e.g., compatibility, appearance, performance) of this material by means of laboratory test(s), manufacturing trial(s), and/or another mutually acceptable alternative, using the equipment and methods that are proposed for production. If needed to enable the fabricat
39、ion of a specific component, restricted tolerances and/or additional material property requirements (i.e., the “quality level“ of the aluminum alloy) shall be developed by the affected manufacturing activity and the aluminum supplier. Examples include, but are not limited to specified surface roughn
40、ess and specified surface condition. The “quality level“ of the aluminum alloy for a specific component: shall not conflict with specified requirements in paragraph 3 of this Engineering Material Specification shall be described in detail by the local manufacturing activity shall be a mandatory exte
41、nsion of these Engineering Material Specifications Acceptance of subsequent orders by the aluminum alloy supplier for a given component at the agreed upon quality level implies that all aluminum alloy supplied will be of a comparable quality level and can be painted satisfactorily as defined and rec
42、orded by the manufacturing activity. 3.9 METHOD OF SPECIFYING The specification on the Engineering Drawing, CAD file, or related documents shall include the base aluminum alloy and, as applicable, the surface classification, mill-applied pretreatment, and mill-applied lubricant. For example, an Alum
43、inum Alloy, Sheet, Non-Heat Treatable, Pretreated and Pre-lubed at the mill, with standard processing for a non-visible body panel would be defined thus: Aluminum to WSS-M2A176-A1, Class 3, pretreated to WSS-M10P12-B1, pre-lubricated to WSS-M9G24-A1. 4. GENERAL INFORMATION The information given belo
44、w is provided for clarification and assistance in meeting the requirements of this specification. Contact for questions concerning Engineering Material Specifications. 4.1 REFERENCE DOCUMENTS The reference documents are: External Standards: ANSI H35.2 Dimensional Tolerances For Aluminum Mill Produc
45、ts ASTM B557M Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products ASTM E6 Standard Terminology Relating to Methods of Mechanical Testing ENGINEERING MATERIAL SPECIFICATION WSS-M2A176-A1/A2 Copyright 2014, Ford Global Technologies, LLC Page 6 of 6 ASTM E8
46、M Test Methods for Tension Testing of Metallic Materials ASTM E34 Standard Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys ASTM E517 Test Method for Plastic Strain Ratio r for Sheet Metal ASTM E716 Standard Practices for Sampling and Sample Preparation of Aluminum and Aluminu
47、m Alloys for Determination of Chemical Composition by Spectrochemical Analysis ASTM E1251 Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Atomic Emission Spectrometry ASTM E646 Test Method for Tensile Strain-Hardening Exponents (n-values) of Metallic Sheet Materials EN 485-4 Alu
48、minium and aluminium alloys. Sheet, strip and plate. Tolerances on shape and dimensions for cold-rolled products ISO 4587 Adhesives - Determination of Tensile Lap-Shear Strength of Rigid-to-Rigid Bonded Assemblies SAE J1523 Metal to Metal Overlap Shear Strength for Automotive Type Adhesives Ford Mat
49、erial / Engineering Standards: ESBAU5-1N260-(*) Sheet Metal Gauges & Thickness Tolerances ESDU5A-1B328-(*) Aluminum Material Labeling FLTM BB 113-07 Welding Acceptance Test for Aluminum FLTM BV 101-07 Stress Durability Test for Adhesive Lap-Shear Bonds WSS-M99P1111-A Standard Requirements for Production Materials WSS-M10P12-B1 Aluminum, Pretreatment WSS-M9G24-A1 Lubricant, Aluminum Sheet (*) latest level 4.2 INITIAL MECHANICAL
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1