ImageVerifierCode 换一换
格式:PDF , 页数:19 ,大小:199KB ,
资源ID:783202      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-783202.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ICEA P-32-382-2007 SHORT CIRCUIT CHARACTERISTICS OF INSULATED CABLES《绝缘电缆短路特征》.pdf)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ICEA P-32-382-2007 SHORT CIRCUIT CHARACTERISTICS OF INSULATED CABLES《绝缘电缆短路特征》.pdf

1、 SHORT CIRCUIT CHARACTERISTICS OF INSULATED CABLES ANSI/ICEA PUBLICATION P-32-382-2007 (R2013) 2013 by INSULATED CABLE ENGINEERS ASSOCIATION, Inc. Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. Approved as an American National Standard ANSI Approval Date: February 27, 201

2、3 Insulated Cable Engineers Assoc., Publication No. P-32-382- 2007 (R2013) Short Circuit Characteristics of Insulated Cables Published by Insulated Cable Engineers Association P.O. Box 1568 Carrollton, Georgia 30112 Copyright 2012 by the Insulated Cable Engineers Association. All rights including t

3、ranslation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions. Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. NOTICE

4、AND DISCLAIMER The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating

5、 in the development of this document. The Insulated Cable Engineers Association, Inc. (ICEA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together persons who have a

6、n interest in the topic covered by this publication. While ICEA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgements co

7、ntained in its standards and guideline publications. ICEA disclaims liability for personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance o

8、n this document. ICEA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. ICEA does

9、not undertake to guarantee the performance of any individual manufacturer or sellers products or services by virtue of this standard or guide. In publishing and making this document available, ICEA is not undertaking to render professional or other services for or on behalf of any person or entity,

10、nor is ICEA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgement or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circums

11、tances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication. ICEA has no power, nor does it undertake to police or enforce compliance with

12、the contents of this document. ICEA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to ICEA and is solely

13、the responsibility of the certifier or maker of the statement. ICEA P-32-382-2007 (R2013) Page i Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. CONTENTS Page Foreword ii Section 1 GENERAL . 1 1.1 SCOPE . 1 1.2 REFERENCES . 1 GRAPHS Allowable Short Circuit Currents for Pap

14、er, Rubber, or Varnished Cloth Insulated Copper Conductors Rated for 75C Maximum Continous Operation . 3 Allowable Short Circuit Currents for Thermoplastic Insulated Copper Conductors Rated for 75C Maximum Continous Operation . 4 Allowable Short Circuit Currents for Thermoset Insulated Copper Conduc

15、tors Rated for 90C Maximum Continuous Operation 5 Allowable Short Circuit Currents for Thermoset Insulated Copper Conductors Rated for 105C Maximum Continuous Operation 6 Allowable Short Circuit Currents for Paper, Rubber, or Varnished Cloth Insulated Aluminum Conductors Rated for 75C Maximum Contin

16、uous Operation . 7 Allowable Short Circuit Currents for Thermoplastic Insulated Aluminum Conductors Rated for 75C Maximum Continuous Operation . 8 Allowable Short Circuit Currents for Thermoset Insulated Aluminum Conductors Rated for 90C Maximum Continuous Operation . 9 Allowable Short Circuit Curre

17、nts for Thermoset Insulated Aluminum Conductors Rated for 105C Maximum Continuous Operation . 10 ICEA P-32-382-2007 (R2013) Page ii Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. Foreword This publication discusses factors for consideration in approximating the operabilit

18、y of insulated and/or covered wire and cable under the influence of uninterrupted short circuit currents encountered as a result of cable or other equipment faults. The duration of such a fault is considered to be up to approximately 2 seconds. Calculation for single short circuits of longer duratio

19、ns will yield increasingly conservative results. The following items must be considered in order to estimate the short circuit performance of a specific circuit: 1. The magnitude and duration of the fault current including any fault current division due to available conducting paths. 2. The capabili

20、ty of joints, terminations and other accessories in the affected circuit to withstand the thermal and mechanical stresses created by the fault. 3. The interaction between the faulting circuit and surrounding equipment, such as supports, ties and clamps. 4. The capability of the affected cable circui

21、t, as installed, to withstand the electromagnetic forces created during the fault. 5. The maximum temperature that cable components can withstand without incurring damage due to heating caused by fault current flow. 6. Damage to adjacent equipment due to arcing at the site of the fault. 7. For limit

22、ations imposed on the short-circuit capacity of the cable by the fault capacity of the cable metallic sheath/shield, See ICEA Publication P-45-482, Short Circuit Characteristics of Metallic Sheaths and Shields on Insulated Cable An important simplifying assumption in the formula is the adiabatic nat

23、ure of the heat generated, i.e., the duration of the fault is so short that all the heat developed by the fault current during this time is assumed to be completely contained within the conductor. The amount of heat dissipated from the conductor during continuous, single fault occurrences of relativ

24、ely short duration is small. A significant amount of heat may be dissipated because of the relatively long cooling periods involved for faults interrupted and re-established with automatic reclosing of circuit protective devices. A non-adiabatic calculation may be more suitable for these situations

25、and for single, uninterrupted short circuits in excess of 2 seconds requiring close accuracy. Non-adiabatic calculation methods are described in several published works listed Section 1.2 “References”. The formula described in this publication is based on the thermal capacity of the conductor materi

26、al and the transient temperature limit of the insulation. The quantity of heat contained in the conductor is that created by the fault current and is also a function of the temperature rise in the conductor. The magnitude of the temperature rise is the difference between the limiting transient tempe

27、rature of the ICEA P-32-382-2007 (R2013) Page iii Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. insulation material and the operating temperature of the conductor immediately prior to the initiation of the fault. The limiting transient temperature is that temperature whi

28、ch caused no significant change in any cable component. Suggestions for improvements in this publication are welcome, and should be sent to ICEA at the address below. Insulated Cable Engineers Association, Inc. P.O. Box 1568 Carrollton, GA 30112 ICEA P-32-382-2007 (R2013) Page 1 Copyright 2013 by th

29、e Insulated Cable Engineers Association, Incorporated. Section 1 GENERAL 1.1 SCOPE Equations have been established for short circuit calculations for conductors made of copper or aluminum. The coverings and insulations, which determine the maximum allowable short circuit temperatures, are paper, var

30、nished cloth and several thermoplastic and thermosetting materials presently appearing in ICEA standards. Temperature limits, considered safe, were established for the various covering and insulation materials. The equations may be used to determine: The maximum short circuit permitted for a specifi

31、c conductor and short circuit duration. The conductor size necessary to carry a specific short circuit current for a given duration. The maximum duration a specific conductor can carry a specific short circuit current. An equation has been established for short circuit calculations with conductors o

32、f copper or aluminum. The insulations, which determine the maximum allowed short circuit temperatures, are described in the ICEA Standards. The equation is based on the heat content of the conductor material and the temperature limit of the insulation with the assumption that the time interval is so

33、 short that the heat developed during the short circuit is contained in the conductor. At the time this document was originally published there was no standard mathematical method available to calculate heat flow from the conductor through the insulation at the cessation of the short circuit load. I

34、t was necessary to enlist the aid and facilities of member laboratories and Massachusetts Institute of Technology to obtain in cooperation a solution to this problem so that safe temperature limits could be established for the various types of insulations. The solution is still a viable, conservativ

35、e approach to the calculation of short circuit capacity. Results are sufficiently conservative to neglect conductor skin effect except for very large conductors. Skin effect can be taken into account by dividing the right-hand member of the equations shown by the appropriate conductor ac/dc resistan

36、ce ratio. 1.2 REFERENCES The following publications were referred to in writing this standard. The Transient Temperature Rise of Round Wire Shields of Extruded Dielectric Cables Under Short Circuit Conditions, M. A. Martin Jr., A.W. Reczek Jr., IEEE-ICC Open Forum at 57 Meeting Nov. 17-19, 1975. Opt

37、imization of Design of Metallic Shield-Concentric Conductors of Extruded Dielectric Cables Under Fault Conditions, EPRI EL-3014, Project 1286-2, final Report 4/83. Optimization of Metallic Shields for Extruded Dielectric Cables Under Fault Conditions, IEEE Paper 86 T&D 339-B. ICEA P-32-382-2007 (R20

38、13) Page 2 Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. Normal and Short Circuit Operating Characteristics of Metallic Shielded Solid Dielectric Power Cable, M.A. Martin Jr., D. A. Silver, R. G. Lukac, R. Suarez, IEEE Paper 973 495-9. Fault Test on Embedded Copper Wire

39、and Copper Tape Shielded Single Conductor Cables, C. Landinger, L. D. Cronin, IEEE Paper C73-124-5. Buried Power and Telephone Distribution Systems-Analysis of Primary Cable Fault Tests and Evaluations of Experience With Random Separation, EEI Pub. 68-62. The Short Circuit Rating of Thin Metal Tape

40、Cable Shields, AIEE Trans, Vol. 87, pp. 740-758, March 1968. Fault Current Rating of Metallic Cable Screens, T. M. White, S. E. Philbrick, JICABLE 1087, Paper B6.2. Are Cable Shields Being Damaged During Grounds Faults?, P. S. Hamer, B. M. Wood. IEEE Transactions on Industry Applications, Paper PID-

41、86-6. Design of Metallic Shields for Extruded Dielectric Cables, 1984 IEEE IAS Pulp and Paper Conference, D. A. Silver, M. D. Buckweitz, Paper PPI-84-14. Calculations of Thermally Permissible Short Currents Taking Into Account Non-Adiabatic Heating Effects, IEC Publication 60949-9-1988. ICEA P-32-38

42、2-2007 (R2013) Page 3 Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. Allowable Short Circuit Currents for Paper, Rubber, or Varnished Cloth Insulated Copper Conductors Rated for 75C Maximum Continuous Operation 100100010000100000100000010000 100000 1000000Con ductor S ize

43、 (A W G/ k c mi l)ShortCircuit Current- Amperes1 Cy c l es 2 Cy c l es 4 Cy c l es 8 Cy c l es16 Cy c l es 30 Cy c l es 60 Cy c l es 10 0 Cy c l esC u r v e s B a s e d o n t h e For m u laW h e r e :I = S h o r t C irc u it C u r r e n t - A m p e r e sA = C o n d u c t o r A r e a - C irc u lar M

44、il st = Tim e o f S h o r t C irc u it - S e c o n d sT1= M a x im u m Op e ra ting Tem p e ra tu re - 7 5 CT2= M a x im u m S h o rt C irc u it Tem p e ra tu re - 2 0 0 C108 6 4 2 1 1/0 2/0 3/04/0 250 500 1000350 750234T234Tl o g0 . 0 2 9 7tAI122ICEA P-32-382-2007 (R2013) Page 4 Copyright 2013 by t

45、he Insulated Cable Engineers Association, Incorporated. Allowable Short Circuit Currents for Thermoplastic Insulated Copper Conductors Rated for 75C Maximum Continuous Operation 100100010000100000100000010000 100000 1000000Con ductor S ize (A W G/ k c mi l)ShortCircuit Current- Amperes1 Cy c l es 2

46、Cy c l es 4 Cy c l es 8 Cy c l es16 Cy c l es 30 Cy c l es 60 Cy c l es 10 0 Cy c l es108 6 4 2 1 1/0 2/0 3/0 4/0 250 500 1000350 750C u r v e s B a s e d o n t h e For m u laW h e r e :I = S h o r t C irc u it C u r r e n t - A m p e r e sA = C o n d u c t o r A r e a - C irc u lar M il st = Tim e

47、o f S h o r t C irc u it - S e c o n d sT1= M a x im u m Op e ra ting Tem p e ra tu re - 7 5 CT2= M a x im u m S h o rt C irc u it Tem p e ra tu re - 1 5 0 C234T234Tl o g0 . 0 2 9 7tAI122ICEA P-32-382-2007 (R2013) Page 5 Copyright 2013 by the Insulated Cable Engineers Association, Incorporated. Allo

48、wable Short Circuit Currents for Thermoset Insulated Copper Conductors Rated for 90C Maximum Continuous Operation 100100010000100000100000010000 100000 1000000Con ductor S ize (A W G/ k c mi l)ShortCircuit Current- Amperes1 Cy c l es 2 Cy c l es 4 Cy c l es 8 Cy c l es16 Cy c l es 30 Cy c l es 60 Cy

49、 c l es 10 0 Cy c l es108 6 4 2 1 1/0 2/0 3/0 4/0 250 5001000350 750C u r v e s B a s e d o n t h e For m u laW h e r e :I = S h o r t C irc u it C u r r e n t - A m p e r e sA = C o n d u c t o r A r e a - C irc u lar M il st = Tim e o f S h o r t C irc u it - S e c o n d sT1= M a x im u m Op e ra ting Tem p e ra tu re - 9 0 CT2= M a x im u m S h o rt C irc u it Tem p e ra tu re - 2 5 0 C234T234Tl o g0 . 0 2 9 7tAI122ICEA P-32-382-2007 (R2013) Page 6 Copyright 2013 by th

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1