ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:164.11KB ,
资源ID:792297      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-792297.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ITU-R P 841-4-2005 Conversion of annual statistics to worst-month statistics《年统计到最坏月统计的转换》.pdf)为本站会员(李朗)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ITU-R P 841-4-2005 Conversion of annual statistics to worst-month statistics《年统计到最坏月统计的转换》.pdf

1、 Rec. ITU-R P.841-4 1 RECOMMENDATION ITU-R P.841-4 Conversion of annual statistics to worst-month statistics (Question ITU-R 201/3) (1992-1999-2001-2003-2005) The ITU Radiocommunication Assembly, considering a) that for design of radiocommunication systems the required statistics of propagation effe

2、cts pertain to the worst-month period of reference; b) that the reference statistics for many radiometeorological data and propagation prediction methods is “the long-term average annual” distribution; c) that consequently there is a need for a model that provides for the conversion of the “annual”

3、to the “worst-month” statistics, recommends 1 that the model given in Annex 1 be used for the conversion of the average annual time percentage of excess to the average annual worst-month time percentage of excess. Annex 1 1 The average annual worst-month time percentage of excess, pw, is calculated

4、from the average annual time percentage of excess p by use of the conversion factor Q: pw= Q p (1) where 1 Q 12, and both p and pwrefer to the same threshold levels. 2 Q is a two parameter (Q1, ) function of p (%): ()=ppQpQpQpQQpQQp%30for303%30%3for3%312for%12for12)3.0log(3log1111111)(1(2) 2 Rec. IT

5、U-R P.841-4 3 The calculation of the average annual time percentage of excess from the given value of the average annual worst-month time percentage of excess is done through the inverse relationship: p = pw / Q (3) and the dependence of Q on pwcan be easily derived from the above given dependence o

6、f Q on p. The resulting relationship for 12 p0 pw(%) Q13(1)is ( p0= (Q1/12)1/): )1/()1/(11=wpQQ (4) 4 For global planning purposes the following values for the parameters Q1and should be used: Q1= 2.85, = 0.13 (see Fig. 1). This leads to the following relationship between p and pw: 15.1(%)30.0(%)wpp

7、 = (5) for 1.9 104 pw(%) 7.8. Rec. ITU-R P.841-4 3 For global rain rate applications, the following values for the parameters Q1and should be used: Q1= 2.82, = 0.15, for tropical, subtropical and temperate climate regions with frequent rain Q1= 4.48, = 0.11, for dry temperate, polar and desert regio

8、ns (see Fig. 2). This leads to the following relationship between p and pw: 18.1(%)30.0(%)wpp = (6) where 7.7 104 pw(%) 7.17, for tropical, subtropical and temperate climate regions with frequent rain: 12.1(%)19.0(%)wpp = (7) where 1.5 103 pw(%) 11.91, for dry temperate, polar and desert regions. 5

9、For more precision the values of Q1and for the different climatic regions and various propagation effects given in Table 1 should be used where appropriate. 6 For trans-horizon mixed paths, the and Q1values are calculated from those values for sea and land given in Table 1, through linear interpolat

10、ion using the fractions of the link traversing sea and land respectively as weights. 4 Rec. ITU-R P.841-4 7 Entries under rain rate for Australia are based on 6-min time interval measurements taken from 20 sites over periods lasting from 25 to 101 years. Examples of site locations for each climatic

11、region in Australia are given in the first column of Table 1. Entries under rain rate for Brazil have been derived for measurements of rainfall rates at nine sites over a 46-year period using fast response rain gauges. TABLE 1 and Q1values for various propagation effects and locations Rain effect te

12、rrestrial attenuation Rain effectslant path attenuationRain rate Multipath Trans-horizon land Trans-horizon sea Global 0.13, 2.85 0.13, 2.85 0.13, 2.85 0.13, 2.85 0.13, 2.85 Tropical, subtropical and temperate climate regions with frequent rain 0.15, 2.82 Dry temperate, polar and desert regions 0.11

13、, 4.48 Europe North West 0.13, 3.0 0.16, 3.1 0.13, 4.0 0.18, 3.3 Europe North West 1.3 GHz 0.11, 4.9 Europe North West 11 GHz 0.19, 3.7 Europe Mediterranean 0.14, 2.6 0.16, 3.1 Europe Nordic 0.15, 3.0 0.16, 3.8 0.12, 5.0 Europe alpine 0.15, 3.0 0.16, 3.8 Europe Poland 0.18, 2.6 Europe Russian Federa

14、tion 0.14, 3.6 Europe UK 40 and 50 GHz 0.13, 2.54 Congo 0.25, 1.5 Canada Prairie and North 0.08, 4.3 Rec. ITU-R P.841-4 5 TABLE 1 (continued) Rain effect terrestrial attenuation Rain effectslant path attenuationRain rate Multipath Trans-horizon land Trans-horizon sea Canada Coast and Great Lake 0.10

15、, 2.7 Canada Central and Mountains 0.13, 3.0 United States of America Virginia 0.15, 2.7 Russian Federation North European region 0.10, 4.57 Russian Federation Central and West European region 0.16, 2.38 Russian Federation Middle Volga region and South Ural 0.10, 4.27 Russian Federation Central Step

16、pe and South European region 0.15, 2.69 Russian Federation West Siberian region 0.14, 3.72 Russian Federation Middle Siberian Plateau and Jakutia 0.11, 5.04 Russian Federation South Far East 0.13, 3.53 Australia Temperate/ coastal 0.17, 2.65 Australia Subtropical/ coastal 0.15, 3.15 6 Rec. ITU-R P.8

17、41-4 TABLE 1 (end) Rain effect terrestrial attenuation Rain effectslant path attenuationRain rate Multipath Trans-horizon land Trans-horizon sea Australia Tropical/arid 0.12, 4.35 Brazil Equatorial 0.13, 2.85 Brazil Tropical maritime 0.21, 2.25 Brazil Tropical inland 0.13, 3.00 Brazil Subtropical 0.

18、13, 2.85 Indonesia 0.22, 1.7 Japan Tokyo 0.20, 3.0 Japan Yamaguchi 0.15, 4.0 Japan Kashima 0.15, 2.7 South Korea 0.12, 4.6 Kyrgyzstan Flat regions 0.09, 5.95 Kyrgyzstan Mountainous regions 0.10, 6.70 Kyrgyzstan Coastal region of Ysyk-Kol lake 0.14, 4.73 China South 0.15, 3.12 China North 0.13, 4.12 China Desert 0.10, 5.40

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1