ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:332.55KB ,
资源ID:792331      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-792331.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ITU-R PN 834-1-1994 Effects of Tropospheric Refraction on Radiowave Propagation《对流层折射对无线电波传播的影响》.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ITU-R PN 834-1-1994 Effects of Tropospheric Refraction on Radiowave Propagation《对流层折射对无线电波传播的影响》.pdf

1、21 4 ITU-R RECMN*PN- 834-L 94 48552112 0521960 549 = Rec. ITU-R PN.834-1 RECOMMENDATION ITU-R PN.834-1 EFFECTS OF TROPOSPHERIC REFRACTION ON RADIOWAVE PROPAGATION (Question ITU-R 201/3) ( 1992- 1994) The ITU Radiocommunication Assembly, considering that for the proper planning of terrestrial and Ear

2、th-space links it is necessary to have appropriate calculation a procedures for assessing the refractivity effects on radio signals; b) signals on terrestrial and Earth-space links, that procedures have been developed that allow the calculation of some refractive propagation effects on radio recomme

3、nds 1. that the information in Annex 1 be used for the calculation of large-scale refractive effects. ANNEX 1 1. Ray bending A radio ray passing through the lower (non-ionized) layer of the atmosphere undergoes bending caused by the gradient of the refractive index (see Recommendation ITU-R PN.369).

4、 Since the refractive index varies mainly with altitude, only the vertical gradient of the refractive index is generally considered. The curvature at a point is therefore contained in the vertical plane and is expressed by: where: P: n: dnldh : h: p: radius of curvature of the ray path refractive in

5、dex of the atmosphere vertical gradient of refractive index height of the point above the Earths surface angle of the ray path with the horizontal at the point considered. This ray curvature is defined as positive for ray bending towards the Earths surface. This phenomenon is virtually independent o

6、f frequency, if the index gradient does not vary significantly over a distance equal to the wavelength. 2. Effective Earth radius on an approximately horizontal path If the path is approximately horizontal, cp is close to zero. However, since n is very close to 1, equation (i) is simplified as follo

7、ws: 1 dn p-dh -_ - It is therefore clear that if the vertical gradient is constant, the trajectories are arcs of a circle. ITU-R RECMNaRN. 834-3 94 4855232 05239bL 480 215 A well-known transformation allows propagation to be considered as rectilinear above a hypothetical Earth of Rec. ITU-R PN.834-1

8、 effective radius Re = k a, where: Elevation angle 8 (degrees) 1 2 4 10 20 30 1 10 1 1 dn 1 - +- ka a dli - Re - Average total angular deviation, A0 (degrees) Polar Temperate Temperate Tropical maritime continental air continental air maritime air air 0.45 - - 0.65 0.47 0.32 0.36 0.38 0.21 0.25 0.26

9、 . 0.27 0.10 0.1 1 0.12 O. 14 0.05 0.06 0.03 0.04 Day-to-day variation in A0 (for columns 1 and 4 only) o. 1 r.m.s. 0.007 r.m.s. (3) where a is the actual Earth radius, and k is the effective earth radius factor. The exponential model of the refractive index (see Recommendation ITU-R PN.369), used i

10、n the first kilometre of the atmosphere, can be approximated by a linear one corresponding to an effective Earth radius with k = 4/3. 3. Modified refractive index For some applications, for example for ray tracing, a modified refractive index or refractive modulus is used, defined in Recommendation

11、ITU-R PN.310. The refractive modulus M is given by: M=N+; h (4) h being the height of the point considered expressed in metres and a the Earths radius expressed in thousands of kilometres. This transformation makes it possible to refer to propagation over a flat Earth surmounted by an atmosphere who

12、se refractivity would be equal to the refractive modulus M. 4. Apparent boresight angle on slant paths The decrease in refractive index with height will produce an increase A0 in the apparent elevation angle for an elevated source. There will be fluctuations about this apparent angle due to local va

13、riations in the refractive-index structure. Table 1 presents the average angular deviation values for propagation through the total atmosphere. It summarizes experimental data obtained by radar techniques, with a radiometer and a radiotelescope. TABLE 1 Angular deviation values for propagation throu

14、gh the total atmosphere 21 6 5. Rec. ITU-R PN.834-1 Beam spreading on slant paths Signal loss may also result from additional spreading of the antenna beam caused by the variation of atmospheric refraction with the elevation angle. This effect should be negligible for all elevation angles above 3“.

15、Figure 1 gives an estimate of the losses through the total atmosphere due to atmospheric refraction effects. Losses should be independent of frequency over the range 1-100 GHz where water vapour is contributing to the refractive profile. FIGURE 1 An estimate of loss due to the additional spreading o

16、f a beam and standard deviation about the average Rec. ITU-R PN.834-1 217 6. Effective radio path length and its variations Since the tropospheric refractive index is higher than unity varying as a function of altitude, a wave propagating between the ground and a satellite has a radio path length ex

17、ceeding the geometrical path length. The difference in length can be obtained by the following integral: B AL = J(n - 1) ds A where: S: length along the path n: refractive index A and B: path ends. Equation (5) can be used only if the variation of the refractive index n along the path is known. When

18、 the temperature T, the atmospheric pressure P and the relative humidity H are known at the ground level, the excess path length AL will be computed using the semi-empirical method explained below, which has been prepared using the atmospheric radio-sounding profiles provided by a one-year campaign

19、at 500 meteorological stations in 1979. In this method, the general expression of the excess path length AL is: where cpo is the elevation angle at the observation point, A LV is the vertical excess path length and k and 6 (cpo, ALv) are corrective terms, in the calculation of which the exponential

20、atmosphere model is used. The k factor takes into account the variation of the elevation angle along the path. The S(cp0, ALv) term expresses the effects of refraction (the path is not a straight line). This term is always very small, except at very low elevation angle and is neglected in the comput

21、ation; it involves an error of only 3.5 cm for a cpo angle of 10“ and of 0.1 mm for a cpo angle of 45“. It can be noted, moreover, that at very low elevation for which the 6 term would not be negligible, the assumption of a plane stratified atmosphere, which is the basis of all methods of computatio

22、n of the excess path length, is no longer valid. The vertical excess path length (m) is given by: A Lv = 0.02228 P / g + f(T) H (7) In the first term of the right-hand side of equation (7), P is the atmospheric pressure (hPa) and g is the acceleration due to gravity (m/s2) at the observation point.

23、In the empirical second term, H is the relative humidity (%): the function of temperaturef(T) depends on the geographical location and is given by: f(T) = a 10bT where: Tis in (OC) a is in (m/%) of relative humidity b is in (OC-). Parameters a and b are given in Table 2 according to the geographical

24、 location. 218 Location a (d%) ITU-R RECMN*PN- 834-3 94 4855232 05219bY 39T = b (OC-I) Rec. ITU-R PN.834-1 CoastaI areas (islands, or locations less than 10 km away from 1 sea shore) 5.5 10-4 TABLE 2 2.91 x Non-coastal equatorial areas All other areas 6.5 x 10-4 2.73 x 7.3 x 10-4 2.35 x To compute t

25、he corrective factor k of equation (6), an exponential variation with height h of the atmospheric refractivity N is assumed: N(h) = N, exp (4 / ho) (9) where N, is the average value of refractivity at the Earth?s surface (see Recommendation ITU-R PN.453) and ho is given by: k is then computed from t

26、he following expression: where n, and n (ho) are the values of the refractive index at the Earth?s surface and at height ho (given by equation (10) respectively, and r, and r(h0) are the corresponding distances to the centre of the Earth. 7. Propagation in ducting layers Ducts exist whenever the ver

27、tical refractivity gradient at a given height and location is less than -157 km-?. The existence of ducts is important because they can give rise to anomalous radiowave propagation, particularly on terrestrial or very low angle Earth-space links. Ducts provide a mechanism for radiowave signals of su

28、fficiently high frequencies to propagate far beyond their normal line-of-sight range, giving rise to potential interference with other services (see Recommendation IT-R PN.452). They also play an important role in the occurrence of multipath interference (see Recommendation ITU-R PN.530) although th

29、ey are neither necessary nor sufficient for multipath propagation to occur on any particular link. 7.1 Influence of elevation angle When a transmitting antenna is situated within a horizontally stratified radio duct, rays that are launched at very shallow elevation angles can become ?trapped? within

30、 the boundaries of the duct. For the simplified case of a ?normal? refractivity profile above a surface duct having a fixed refractivity gradient, the critical elevation angle a (radian) for rays to be trapped is given by the expression where dMldh is the vertical gradient of modified refractivity (

31、z O) and bh is the thickness of the duct which is the height of duct top above transmitter antenna. Figure 2 gives the maximum angle of elevation for rays to be ?trapped? within the duct. The maximum trapping angle increases rapidly for decreasing refractivity gradients below -157 km-? (Le., increas

32、ing lapse rates) and for increasing duct thickness. P v E o M C m - M C .- p: t! e ITU-R RECMN*RN- 834-1 94 E 4855212 0523965 026 E Rec. ITU-R PN.834-1 FIGURE 2 Maximum trapping angle for a surface duct of constant refractivity gradient over a spherical Earth 5.0 4.0 3.0 2.0 1 .o 0.0 - 100 - 200 - 3

33、00 Refractivity gradient (N/km) - 400 ?. ;w: 219 0.25 o. 20 0.15 0.10 0.05 0.00 - Lu o .- .- e U 7.2 Minimum trapping frequency The existence of a duct, even if suitably situated, does not necessarily imply that energy will be efficiently coupled into the duct in such a way that long-range propagati

34、on will occur. In addition to satisfying the maximum elevation angle condition above, the frequency of the wave must be above a critical value determined by the physical depth of the duct and by the refractivity profile. Below this minimum trapping frequency, ever-increasing amounts of energy will “

35、leak” through the duct boundaries. The minimum frequency for a wave to be trapped within a tropospheric duct can be estimated using a phase integral approach. Figure 3 shows the minimum trapping frequency for surface ducts (solid curves) where a constant (negative) refractivity gradient is assumed t

36、o extend from the surface to a given height, with a “standard” profile above this height. For the frequencies used in terrestrial systems (typically 8-16 GHt), a ducting layer of about 5 m to 15 m minimum thickness is required and in these instances the minimum trapping frequency,f,i, is a strong fu

37、nction of both the duct thickness and the refractive index gradient. In the case of elevated ducts an additional parameter is involved even for the simple,case of a linear refractivity profile. That parameter relates to the shape of the refractive index profile lying below the ducting gradient. The

38、dashed curves in Fig. 3 show the minimum trapping frequency for a constant gradient ducting layer lying above a surface layer having a standard refractivity gradient of -40 N/km. 220 25 20 h z c3, A 15 3 Lti bD C a a .- E - 10 .- z c: .- E 5 O O Rec. ITU-R PN.834-1 FIGURE 3 Minimum frequency for “tr

39、apping” in atmospheric radio ducts of constant refractivity gradients 10 20 30 Layer thickness (m) Surface-based ducts Elevated ducts above standard refractive profile - 40 For layers having lapse rates that are only slightly greater than the minimum required for ducting to occur, the minimum trapping frequency is actually increased over the equivalent surface-duct case. For very intense ducting gradients, however, trapping by an elevated duct requires a much thinner layer than a surface duct of equal gradient for any given frequency.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1