1、 KS C IEC 60493-1 KSKSKSKSSKSKSKS KSKSKS SKSKS KSKS SKS KS 1: KS C IEC 60493-1 : 2002 (2012 ) 2002 10 29 http:/www.kats.go.kr C IEC 60493 1: 2002 : ( ) ( ) () ( ) : (http:/www.standard.go.kr) : : 2002 10 29 :2012 12 27 20120783 : : ( 02-509-7294) (http:/www.kats.go.kr). 10 5 , . ICS 29.035.01 KS 1:
2、C IEC 60493 1: 2002(2012 ) Guide for the statistical analysis of ageing test data Part 1: Methods based on mean values of normally distributed test results 1974 1 IEC 60493 1(Guide for the statistical analysis of ageing test data Part 1: Methods based on mean values of normally distributed test resu
3、lts) 1. , . . . . 2. (: , , ) . , , . . (: ) . . 3.7 . . Arrhenius ( .) . , IEC 60216 3 . ( , , ) . C IEC 60493 1: 2002 2 . A , . . . A . “ ” “ ” , “ ” “ ” . “ ” “ ” . 3. 3.1 X . F(x) = P(X x) (3.1.1) P(X x) X x . F(x) 0 1 , x (never-decreasing) . F(x) x . xxFxfd)(d)( = (3.1.2) . . : = xxxf d)( (3.1
4、.3) . = 5.0d)()( xxfF , (3.1.4) : = dxxfx )()(22 (3.1.5) . X . , = . . 3.2 n . (3.1.3) . C IEC 60493 1: 2002 3 nxxni1i= (3.2.1) xi= (i = 1, 2, ., n) . , (x(1), x(2), ., x(n) ( , n , n ) (3.1.4) . )odd(21nnxx+= (3.2.2a) )even(212112n2nnxxx+= (3.2.2b) . 1)(1i2i2=nxxsn1)(2i2i=nnxx)1()(2i2i=nnxxn(3.2.3)
5、 n 1 = f s2 . 3.3 , e . e . ( e (: 0.05) ) , (1 ) . . . . . 1 (: 95 %) , (: 5 %) . . 3.4 ( .) , . . e , e1 e2 ( ) 1 , e1= e2=+ e . 100(1 )(: 95 %) e1 e2 , 100 %( : 5 %) . . C IEC 60493 1: 2002 4 (1 ) e1 e2 1 e e . (1 ) e1 1 , (e ) ( e2=+). (1 ) e2 1 , (e ) ( e1= ). 3.5 3.5.1 (Gaussian) , 2 . 22222/)
6、(exp)(=xxf (3.5.1) 22exp)(2uuf= (3.5.2) =xu (3.5.3) F(u) . n x x =, , . nxu= (3.5.4) 3.5.2 2 (3.2.3) s2 , . nsxt= (3.5.5) t ( Students t) , f n 1(s2 ) . t f . 3.6 3.6.1 . 3.6.2 Fisher ( ) . 2221ssF = (3.6.1) 21s 22s 2 . 21 22 , F (3.3 ), f1 f2, 21s , 22s F(, f1, f2) . FF(, f1, f2) , . 21s 22s ( .),
7、f = f1+ f2 . nx22 =C IEC 60493 1: 2002 5 212222112ffsfsfs+= (3.6.2) 3.6.3 Bartlett . csfsfxk)lglg(3.22i1ii22= (3.6.3) )1(31111i i+=kffck(3.6.4) k , 2is f1 (i = 1, 2, . k) , f =fi . k 2is 2 . 2 2(1 , k 1) . k 1, 2 , , . 22(1 , k 1) , . Barlett , 2is f1 2 . , 2s f . 3.7 x , y =a bx . x ( ) y . . , Arr
8、henius , , . ( ) . 3.7.1 () . a) x y , . b) y . . c) x . xi , i yij . d) 1 y . e) y x . . , . . . i2ii2fsfs=C IEC 60493 1: 2002 6 1 3.6.2 Fisher 3.7.3 . N F . , N . , ( ) . , x y , . . . , . , . 5 Bartlett (3.6.3). , x , . 3.7.2 (3.7 ). y a bx (3.7.1) a b . xbya = (3.7.2) =kkxxnyyxxnb1i2ii1iiii)()(=
9、kkxxnyxxn1i2ii1iiii)()(3.7.3) =kknyny1ii1iii(3.7.4) =kknxnx1ii1iii(3.7.5) i1jijiinyyn= (3.7.6) yij x xi(j = 1, 2, . ni) , ni x xi(i = 1, 2, . k) . (3.7.2) (3.7.3) . C IEC 60493 1: 2002 7 (xm, ym) ym xm , N ni . Nxbyamm= (3.7.2a) NxxNyxyxb2m2mmmmm) (= (3.7.3a) 1 N . x (n1 n2 . nk n) . xbyNakn=1i1jij1
10、(3.7.2b) =kkxxyyxxb1i2i1iii)()()(=kkkkkxkxyxkyx1i1i2i2i1ii1ii1iii11(3.7.3b) =kknyNyky1i1i1jiji11(3.7.4b) =kxkx1ii1 a b (3.7.1) x X . Y a bX (3.7.7) , Arrhenius x 1/, y log t , , . x y Y x baYX= (3.7.8) . Arrhenius , , 5 000 . 3.7.3 xi yij(j = 1, 2, . ni) ),2,1i()(1121jiiji2i1ikyynsnK=(3.7.9) fi= ni
11、1 (3.2.3) . Bartlett (3.6.3) . (: 5 %) , N k . C IEC 60493 1: 2002 8 kNsfs=2i1i21(3.7.10) (3.7.1) xi k Yi a bxi(3.7.11) k 2 2)(1i2iii22=kYynsk(3.7.12) . 22s 21s , , x y . (k 2, N k) ( 5 %) F (3.6.2 ). F . 2)2()(22212+=NskskNs (3.7.13) =k nYyNs1i1j2iji2i)(21(3.7.2a) (3.7.3a) . 2)(mm22m2+=NyxyxNbyNys
12、(3.7.13a) (3.7.2b) (3.7.3b) i ni= n , . 2)(ii22ij2+=NyxnyxNbyNys (3.7.13b) 3.7.4 y X Y (3.7.7) Y . +=2ii222)()(1xxnxXNssy(3.7.14) N 2 . y . Y tssy( ), Y tssy( ) ts t(1 /2, N 2) t (Student t) . t 1 (: 95 %), 5 %, 1 /2 97.5 %) N 2 . . . Y tasy( ) ta t(1 , N 2) . 1 (: 95 %) . 2122ssF =C IEC 60493 1: 20
13、02 9 3.7.5 x Y X (3.7.7) . 2ii22)( xxnbstbbsr= (3.7.15) +=2ii2r22r)()(xxnxXNbbss (3.7.16) ts t(1 /2, N 2) 1 (: 95 %, 1 /2 97.5 %) N 2 Student t . x . rrs)(bstyYx+ ( ) rrs)(bstyYx+ ( ) 1 . x , y Y x . Arrhenius x ( , 1/x ) . (3.7.15) ts 1 (: 95 %) ta t(1 , N 2) . rra)(bstyYx+ ( ) rbb . bstXys bstXys+
14、 . bstXya+ (3.7.14) +=2ii222)()(1xxnxXNssy4. . (: ) . . . . . IEC 60216 3 . 4.1 4.1.1 , (C IEC 60493 1: 2002 10 ) . . , . ( , ) i ni N ni tij . 3.7 y f1(t) , ( Arrhenius . x 1/, .) x f2( ) . t x 3.7.5 Y f1(t) . x f2( ) . 4.1.2 , t1, t2, . ( 1 ). tf . 21ffij+=ttt , . , , . N ni tij , 4.1.1 . . . . p
15、t v f4(p), u f3(t) . . tij . 4.2 ( ) 4.1 . . , p t . i ti i ( 2 ). u f3(t) v f4(p) ( 3 ). u v 3.7.2 v a bu , . i ti k (i = 1, 2, ., k). ( ) , y x 3.7 y f1(t) x f2( ) . t y 3.7.3 . 22s k 2 2 22s . . C IEC 60493 1: 2002 11 y 21is 1 . p t( t u) , , , tij ( 3 ). 3.7 . . C IEC 60493 1: 2002 12 A 1 A. Hal
16、d: Statistical Theory with Engineering Applications. Wiley, 1952 2 A. Hald: Statistical Tables and Formulas. Wiley, 1952 3 Lothar Sachs: Statische Auswertungsmethoden. springer, 1972 4 William H. Beyer (ed.): Handbook of Tables for Probability and Statistics. The Chemical Rubber Co., 1968 5 K.A. Bro
17、wnlee: Industrial Experimentation. Her majestys Stationery Office, 1949 2 1 Paragraph 6.7 1 Paragraph 7.2 3.3 1 Paragraph 9.4 3 Paragraph 145 5 Chapter II (c) and (d) 3.4 1 Paragraph 9.5 3 Paragraph 141 5 Chapter III (b) 3.5.1 1 Chapter 5 3 Paragraph 134 5 Chapter II (i) 2 Tables I, II, III 4 Part II 3.5.2 t 1 Chapter 15 3 Paragraph 151 t 2
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1