ImageVerifierCode 换一换
格式:PDF , 页数:33 ,大小:1.10MB ,
资源ID:835990      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-835990.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-RM-A54D22-1954 Investigation of the normal force accompanying thrust-axis inclination of the NACA 1 167-(0)(03)-058 and the NACA 1 167-(0)(05)-058 three-blade propellers .pdf)为本站会员(boatfragile160)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-RM-A54D22-1954 Investigation of the normal force accompanying thrust-axis inclination of the NACA 1 167-(0)(03)-058 and the NACA 1 167-(0)(05)-058 three-blade propellers .pdf

1、RESEARCH MEMORANDUM INVESTIGATION OF THE NORMAL FORCE ACCOMPANYING THRUST- AXIS INCLINATION OF THE NACA 1.167(0)(03)-058 AND THE NACA 1.167.(0)(05)-058 THREE-BIXDE PROPELLERS AT FORWARD MACH NUMBERS TO 0.90 By Fred A. Demele and William R. Otey Ames Aeronautical Laboratory Moffett Field, Calif. NATI

2、ONAL ADVISORY COMMITTEE FOR AERONAUTICS f I 3 WASHINGTON June 23,1954 I Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-u NACA RM A54D2!2 * NATIONAL ADVISORY COMMITTEE FOR RESEARCHMEZ4ORARDUM AERONAUTICS INVESTIGATION OF TRE NORMAL FORCE ACCOMPANYING

3、 THRUST- AXIS INCLINATION OF TEZE NACA 1.167-(0)(03)-058 AND THE NACA 1.167-(0)(05)-058 TECEUZE-BLADE PROPELLERS AT FORWARD MACH NME3ERS To 0.90 By Fred A. Demeleand William R. Otey SUMMARY An investigation has been conducted to determine experimentally the normal force of the NACA S.l67-(0)(03)-058

4、 and the RACA 1.167-(o)(o)-058 three-blade propellers and to ascertain the agreement of the measured normal force with a theoreticsl method developed herein. The propeller thrust and normal force were measured with the thinner propeller for a range of blade angles and angles of attack at forward Mac

5、h numbers from 0.60 to 0.90. For the thicker propeller, similar measurements were made at forward Mach numbers of 0.0 pWsb Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM A.54E22 3 CfQ % D b 6 fn fQ h h 6 J r r PO II free-stream velocity loca

6、l forward veloc-fty axial interference velocity resultant interference velocity rotational interference velocity rearward displacement velocity of helical vortex surface at infinity ratio of displacement velocity to component of local forward velocity parallel to thrust axis blade-section helical ve

7、locity considering induced effects blade-section helical velocity neglecting induced effects fraction of tip radius, G ratio of spinner radius to tip radius, 2 angle- of attack of the thrust axis tith respect to the free-atream direction blade-section angle of attack propeller induced angle of inflo

8、w blade angle at 0.7 radius blade angle tan-= Cd 0 cz absolute viscosity free-stream density propeller solidity, whereas normal force is resolved from the measured lift and longitudinal force in a direction normalto the thrust axis. The forces were measured by the six-camponent balance system. Seal-

9、Pressure Correction The pressures acting on either side of the concentric seal were measured, and the forces resulting from the measured pressures were adjusted for computational purposes to correspond to a reference pres- sure equal to the free-stream static pressure. The appropriate component of t

10、his pressure force was applied to the measured thrust for tests with the propeller operating and also with the propeller removed. Choice of free-stream static pressure for a reference pressure deterrntned the net tare force but had no effect on either the propeller thrust or normal force as deftied

11、herein. Tunnel-Wall Correction The data have been corrected for the effect of tunnel-wall constraint on the velocity in the region of the propeller plane by the method of reference 3. The magnitude of the maximum correction applied to the data was 0.7 percent. The constriction effects, due to operat

12、ing the propeller, were evaluated by the method of references 4 and 5 and were found to be negligible. Accuracy of Results Analysis of the sources of error and correlation of test data for duplicate conditFons indicated the maximum probable errors in the data were as follows: Provided by IHSNot for

13、ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA FMA54D22 THEORETICAL CONSIDF pbcz (Vt COB A + Vi cos (P) Ial cp (1 + tan y cot cp) (6) which may be written in coefficient form as CfQ = 2 cos2 At sin cp + Vi COB cp 2 (I+ tan y cot q (7) V COB A The aerodynamic excitati

14、on of the propeller blades, due to the angle of upflow At, is essentially sinusoidal in character and peaks at Sr = go0 and n = 270. If it is assumed that the propeller blade is operating far below resonance in first-mode bending, the oscillating thrust and torque force due to At are also sinusoidal

15、 and in phase with the aerodynamic disturbance. It then follows that the amplitude of the once-per-revolution torque-producing force is given by 1 fQ1Xp =z ( fQa=so - %62=270 The relationship between the normal force and the torque-producing force is fn = fQ sti n from which the average section norm

16、al force per blade per revolution can be expressed as fn If = E = f Qw= the second method relies on an application of Theodorsents circulation function and fs more general in that an arbi- trary blade loading can be considered. In the application of Goldsteins theory, equation (7) is modified by the

17、 basic assumption (ref. 6) that tan ay = *=it vi =- 4K sfn q3 W From the geometry of the velocity diagram, the following expression may be stated: (cot Since, by definition u cp + tan c co2 q (l + tan 7 cot q) (13) wherein the dimensionless parameter F is related to Theodorsents circulation function

18、 (ref. 9). For the present calculations 7 was evaluated with the use of reference 10, wherein this parameter is PreBented as a function of blade loading and advance ratio. In determining 7, values of advance ratio for the propeller uninclined were used. This assumption implies that the Interference

19、velocity is dependent on the element blade loading for the condition of propeller unfnclined, but does not preclude use of instantaneous blade position for the determination of blade-section angle of attack. In determination of the blade-section angles of attack, the blade twist due to the combined

20、effects of centrifugal force and steady loading was accounted for. A more rigorous solution should include the blade twist due to the oscillating afr loads, and also any effect of blade vibration on either the instantaneous blade angle or on the phase lag between the Ixp excitation and the resulting

21、 blade forces for conditions in which WF resonance is approached. Reference ll was the source of the two-dImensional data for NACA 16-series airfoils used in performing the calculations. Reference 12 was used for obtaining the radial distribution of upflow angle, and the radial distribution of veloc

22、ity was calculated by the following cubic equation: F = 1.0 + 0.08 $ S (-El RESULTS The results of this investigation are presented in figures 4 through 10. In figures 4 and 5 the thrust character.istics of the propellers are shown. The normal-force characteristics are presented in ffgures 6 and 7 a

23、s a function of thrust coefficient and in figures 8 and 9 as a function of upflow angle at the 0.7 propeller radius. A comparison of the normal-force coefficient as determined from theory and experiment is shown in figures 8(b), 9 and 10. wy1) Provided by IHSNot for ResaleNo reproduction or networki

24、ng permitted without license from IHS-,-,-I2 DISCUSSION Variation with Thrust NACA RM A54D2!2 The basic normal-force data as presented in figure 6 indicate that for the thin propeller, the normal-force coefficient generally increased slightly with fncreasing thrust coefficient at Mach numbers below

25、0.70 and remained essentially constant at higher Mach numbers. The low-speed data for the thicker propeller (fig. 7) indicate that the normal-force coefficient generally increased with increasing thrust coefficient, the effect becoming more pronounced with increasing angle of attack. Effect of Incli

26、nation Propeller normal-force coefficient is shown as a function of upflow angle at the 0.7 propeller radius in figure 8 for the thin pro- peller, and in figure 9 for the tucker propeller. The angle of upflow at the propeller disk differs from the angle of attack of the thrust axis by the upwash ind

27、uced by the spinner and nacelle. The relationship between the measured upflow angle and the angle of attack of the thrust axis has been determined from the data of reference 12 and is as follows: M it I “:% to 1.185 -70 1.174 .80 1.144 083 1.130 .86 1.120 090 1.100 For the thin propeller, the increa

28、se in normal-force coefficient with upflow angle was essentially linear (fig. 8). It is also seen from this figure that the slope of the normal-force curves is slightly reduced with increasing Mach number and slightly increased with increasing blade angle. The trend of normal-force coefficient tith

29、upflow angle for the thicker propeller was essentially linear, the greatest deviation from linearity occurring at a thrust coefficient of 0.6 for a blade angle of 210 (fig. 9). In addition, as previously noted for the thin propeller, the effect of increasing blade angle was an increase in the normal

30、- force coefficient. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA FM A54D22 13 Comparison with Theory It has been stated earlier in the report that the calculation of normal force for a high-speed condition (thin propeller) was performed by t

31、he method in which the induction effects are accounted for by Goldstein theory. The excellent aseement afforded by this method is shown in figure 8(b) for a blade angle of 51 and a Mach number of 0.70. This agreement might have been anticipated because the condition is one for which the loading was

32、light and the lift distribution nearly optimum and, therefore, the loading did not violate the restriction of the Goldstein theory. For conditiaos of low blade angle and low forward speed (thick pweeed, the normal force was calculated by use of the method which accounts for induction effects by Theo

33、dorsens circulation functions. In figure 9 the calculated values have been plotted at the values of upflow angle for which the calculations were made, and to the first order may be linearly extrapolated to zero upflow angle. It is apparent that the effect of thrust-axis inclination on normal-force c

34、oefficient was consistently underestimated by the theoretical method. A more comprehensive comparison 1s made in figure 10, wherein normal-force coefficient is given as a function of blade angle and also as a function of thrust coefficient. It is evident that the vsrfation of normal-force coefficien

35、t with blade angle and thrust coefficfent was predicted with fair accuracy, but that the absolute magnitude of the normal force was underestimated. The discrepancy between the magnitudes of the calculated and experimental values may be due to several possfble sources of error. The first is the uncer

36、tainty of the two-dimensional airfoil data used in calculating the magnitude of the torque-producing force. The second is the assumed radial velocity gradient used in the absence of experimental data. Finally, the upflow angles, which were measured in the absence of the propeller, could conceivably

37、have been larger with the propeller operating. CONCLTJDING REMARKS Results of an investigation of the normal-force characteristics of the NACA 1.167-(0)(03)-058 and the NACA 1.167-(0)(05)-058 three-blade propellers showed that: 1. In general, the normal-force coefficient increased with increasing th

38、rust coefficient at Mach numbers below 0.70 and remafned essentially constant at the higher Mach numbers. 2. The increase in normal-force coefficient with upflow angle was essentially linear. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 NACA RM

39、 A522 3. Increasing propeller blade angle increased the normal-force coefficient for a given value of thrust coefficient and angle of attack. 4. Comparison between the calculated normal force and that measured experimentally at a forward Mach nmber of 0.7 indicated excel- lent agreement. 5. At-low f

40、orwardspeeds the theoretical method predicted the variation with thrust coefficient and blade angle of propeller normal force with fair accuracy, but consietently underestimated the effect of thrust-axis inclination. - Ames Aeronautical Laboratory National Advisory Committee for Aeronautic8 Moffett

41、Field, Calif., Apr. 22, 1954 REFERENCES 1. Ribner, Herbert S.: Propellers in Yaw. NACA Rep. 820, 1945. 2. Demele, Fred A., and Otey, William R.: Investigation of the NACA 1.167-(0)(03)-058 and NACA 1.167-(0)(05)-058 Three-Blade Propellers at Forward Mach Numbers to 0.92 Including Effects of Thrust-A

42、xis Inclination. NACA RM A53F16, 1953. 3. Herr-rot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Formerly NACA RM A7Et28) 4. Glauert, H.: The Elements of Aerofoil and Airscrew Theory. C

43、ambridge, Eng. The Univ. Press3 New York, Macmillan, 1943, pp. 222-226. 5. Young, A. D.: Note on the Application of the Linear Perturbation Theory to Determine the Effect of Compressibility on the Wind Tunnel Constraint on a Propeller. R.67 Provided by IHSNot for ResaleNo reproduction or networking

44、permitted without license from IHS-,-,-,- Seal detail c Motor-support faking Motor support Figure 2.- Nacelle assembly. Oil and water lines, electrical leads h?- Support-strut fairing - Tunnel floor , r OJ Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-

45、,-,-NACA RM A54D22 Developed plan form Leading edge 20- . I I I I I I I t I I I I1 1 .I8 - 1 I I t. I .- I Ii h/b. IO and b,D .08 t I I III I.1 I I I I i 1.167-(0X0 02 0 76 72 68 64 56 B 52 36 0 .I .2 .3 .4 .5 .6 .7 -8 .9 1.0 , % t -is7 Figure 3.- Blade-form curves for the NACA Ll67-(0)(03)-058 and

46、the NACA 1.167(0)(05)-058 three-blade propellers, Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Tc .OZ .o I 0 -.Ol 22 2.4 26 28 30 3.2 3.4 IS 2.0 2.2 2.4 2.6 2.8 J 26 28 3D 3.2 34 .03 I .02 Tc .Ol 0 F -.o I $ 26 28 30 3.2 3.4 28 28 30 32 34 2.8 30

47、32 3.4 -!z J Figure 4.- !Chrmt characteristice of the NACA 1.167-(O)(Oj)-0% propeller; R = 1,600,ooO. 8 . . . , I Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.6 3 .2 .I 0 I I I I IT t-1 1-t I-4 I T I r I -.I I I I I I I I I I I I .4 .6 .8 ID ID I

48、D ID ID II) _ 8.26 R = 1,600,000. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-08 I 1 .04 CM 0 -04 l- I I I I I I I I I -.Ol 0 .Ol .02 .03 .04 Tc Q. W A 588 0 392 0 0 -3L /bSS” I MlO.83 L- . . . . . . . . . . . . . . - - I I I I 1 I I I M = 0.90 nl c I I -XII 0 .Ol .02 .03 Tc E (c) M = 0.80, 0.83, 0.86, 0.90 Figure 6.- Concluded. . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-, , S e b “T A 7.04

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1