ImageVerifierCode 换一换
格式:PDF , 页数:48 ,大小:1.06MB ,
资源ID:836030      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836030.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-RM-E51H13-1951 Aerodynamics of slender bodies at Mach number of 3 12 and Reynolds numbers from 2 x 10(exp 6) to 15 x 10(exp 6) I - body of revolution with near-parabolic .pdf)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-RM-E51H13-1951 Aerodynamics of slender bodies at Mach number of 3 12 and Reynolds numbers from 2 x 10(exp 6) to 15 x 10(exp 6) I - body of revolution with near-parabolic .pdf

1、SECURITY INFORMATION,.1= . _ =. -L. .- -,. .,- - ., -; WA. -u . .=-a.,L.RESEARCH MEMORANDUMAERODYNAMICS OF SLENDER BODIES AT h consequently,the preceding conclu-sions were based on the bottom profile. This disturbance as well asthat to be mentioned subsequentlyfor angle of attack is attributed to %i

2、rregularitiesin the tunnel flow. Wcauae correctionsof these non- g-unifoties would require considerablymore calibrationdata than arenow aveilable,no attempt was made to evaluate the effect herein. Thedisturbance affecting the side-pressuredistribution at zero angle ofattack was evaluated in terms of

3、 over-all drag and at most gave merror of approximately1 percent. -Angle of attack. - The axial pressure distributions along the topand bottom of the model are presented in figure 5 for three angles ofattack and three Reynolds numbers. The pressure-coefficientticrementsdue to angle of attack, aspare

4、d in figure 6 with theOn the bottom surfaceexperiment snd theory haveprogressively worse as thedetermined from figures 4 and 5, are com-slender-bodytheory of reference 1.of the model (figs. 6(a), 6(b, and 6(c),similartrends, but the agreementbecomes hangle of attack increases. (The humps in.the curv

5、es are attributedto the tunnel disturbancementioned pre-viously.) The effect of Reynolds number upon the agreementwas neg- ligible at 3 angle of attack. At the higher emgles”of attack, nodefinite Reynolds number effect ws.aobservable.On the top surface of the model (figs. 6(d), 6(e), and 6(f), theef

6、fect of increasingthe angle of attack w.to decrease the pressureson the nose section in a manner similar to that predicted by theory.The theoretical curves for a = 3, 8, and 10o cross each other,whereas the experimental curves do not. The differencebetween experi-ment and theory for the cylindrical.

7、portion of the model increased asthe angle of attack increased. This result is attributedto cross-flowseparationwhich will be discussed later.Some improvement in the agreementbetween experiment and theorywith .creasingReynolds number was observed on the forward part ofthe nose; however, the change i

8、n the agreement for the rest of the bodywas negligible.Experimentalpressure distributionsas a function of the meridianangle around the body are given in figure 7ufor three axial stationsand three Reynolds numbers. Since no conclusiveReynolds number effectwas obtained, only the experimentalpressure i

9、ncrements due to angle.9,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2.-.NACA RM E51E13 9of attack for a Reynolds number of 15X1.06are compared with theory infigure 8. Agreement between eeriment and theory is good for CL= 3but poor for a = 8.Bas

10、e PressuresThe variation of base-pressure coefficientwith Reynolds nuniberispresented in figure 9. In figure 9(a) the measured coefficients atzero angle of attack ere compared with the coefficients predicted by themethod of reference 8. The method of reference 8 predicts the correcttrend, but undere

11、stimates the meaeured values by more than 10 percent.However, in terms of over-all drag this discrepancy amounts to only5 percent.The variation of base-pressure coefficientwith free-stresm Rey-nolds nuniberfor 0, 3, 6, 8, and 10 es of attack is presentedin figure 9(b). For zero angle of attack, the

12、base-pressure coefficientdecreases with increasingReynolds number until a Reynolds numiberof6XL06 is reached and then remains relatively constant. With increasingsingleof attack, the Reynolds nuniberat which the pressure becomes con-stant increases to approximately 12X106 for u = 8.Figure 10 shows t

13、he variation of the base-pressure coefficient withe of attack for five Reynolds nunibers. The base-pressure coeffi-cients for the highest Reynolds numbers decrease as the angle of attackincreases;however, for the two low Relds numbers, the pressure coef-ficient first increases to a maximum near u =

14、+3 and then decreasesfor higher anglesof attack. The broken line between the m = Go datais used,to indicate that the true variation of the pressure coefficientin this region is unlmown. This behavior for the low Reynolds numbersmay be associatedwith the movement of the boundery-layer-transitionregio

15、n with increasing angle of attack which will be discussed morefully later. The cross-over of the curves presented in figure 9(b mayalso be attributed to the movement of the boundary-layer-transitionregion with angle of attack.Boundary Layer and Cross-Flow Sep=ationSkin friction. - In order ta comple

16、te the investigation of the com-pon=t drag forces which meke up the tital drag of the body at a . 0,friction-drag coefficientswere obtdned from the experimentally deter-mined displacement and momentum thicknesses for Reynolds numbers ofL406, 806, end 1406. The experimentalmean friction-drsg coeffi-c

17、ients CD for different axial stations are presented in figure s for the pr botcimsurface “, 00.20#m Nominal angle .16 . c d attack r(d%Q o : 8365 .12- 10 o Linearized poten-$ cl tial theory* u. mon / 5CJ o 0 /$LJm- vjncw Q *: .04 Q . AU Pw; -njo nz .16(b) Reyn.lda number R., 8XI.06Sb.ttgi_eurfac: 8,

18、 0 _.c.12.08 n5LA c a UL -f-J.04 n n na nQn u n . c 00 00An no .2 .4 .6 Axial.%tetiOn, li! ft -1.2 1X u1.6 1.8(c) Reynolds number Re, ISXI.06;bottan surface 6, 0.FlgWe 6. - Experimental and theoreticalezie.1variation of pm%=we -coefflciantincrement dueto angle of attcck.-.-$!co.-a71.3,.Provided by I

19、HSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-l?ACARM E51H13 27mcoNINI.041080 + . 3A AA/A “/ *,-.04 v V top surfaoe e, IsoO.10/ 63AAA ID4 O FNominalcngle y Orattcckvv (d:g)+:/D 10 Linecrlzed poten-tial theory(e) Reynolds ntnuber E., 6x106; top smface e, 180.04l

20、“”/ .90 / . 3 5 9( % w 3 v Vv .A G4. v v-.04 /v ./ T-.060 .2 .4 .6 .6 1.0 1.2 1.4 - 1.6 1.8hial station, x, ft(f) Reync.ldcnwnber Re, 15xI06; top surface 6, 160Figure 6. - Concluded. Experimental cnd theoretical .cxialvarlatlon of pressme-coefficientincrement due to angle of attack.Provided by IHSNo

21、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACAW E51H13.,14.12.10.03,C6.04.02002CJ (a)hlal station x, 4 hches; Reynoldn mnnber %, 2X106,.06r.04.020-.02t-.C4 1 I I I I I I II I I I I(b)kid. staticm x, 14 Indies;Reynoldsnumber Re, 2xlC.04.020-.02 J7%I I “ ysyC4lbo

22、 ,6 0 -.5 -1.0C9e .9L I I I I I Io 30 60 90 120 1.30MO .i.lexidlanIMIS1O,8, deg(o)Axial Etitim x, 20.5 InoheajReynolAsnwnher Re, 2xI.06.1!w+_.IFQWe 7. - Rxgerhnentalvariaticm of presmnw meffioient with meridian an.8for given axialstation.Provided by IHSNot for ResaleNo reproduction or networking per

23、mitted without license from IHS-,-,-NACA I/M E5ZEL3 29.mco(NN.14.12.10 ,.OaU%. ,_le of attaok CM(d:g).04 tm o: 5v 10.02 cY-o 1002- ) 7-An /8 (d)Jxial ,tatlat X, 4 tiahes;EeYMlds *- Eu, .CE-iE!:IReynoldsnumker Ib, ReyncIldEnumlwr Re, .9x10S.Pire 7. - tinued. bprimntal. tiatlon of premuxa oc-sfYioientwithmeridiananglefor van axialrtaticn.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1