ImageVerifierCode 换一换
格式:PDF , 页数:28 ,大小:1.04MB ,
资源ID:836118      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836118.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-RM-L57E02-1957 Experimental and theoretical aerodynamic characteristics of two low-aspect-ratio delta wings at angles of attack to 50 degrees at a Mach number of 4 07《当马赫.pdf)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-RM-L57E02-1957 Experimental and theoretical aerodynamic characteristics of two low-aspect-ratio delta wings at angles of attack to 50 degrees at a Mach number of 4 07《当马赫.pdf

1、RESEARCH MEMORANDUM ELXPERJMENTAL AND THEORETICAL AERODY?MMtC CHARACTERJSTICS i L,Otillllllllllllilllliililllullll OlA4B1b NACA RM L57EO2 L NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS RESRARCHMEMORAND “ EXPERlIMENTALAND THEORECICALAERODYNAMIC CHARACTERISTICS OF TWO LOW-ASPFCT-RATIO DELTA WINGS ATANG

2、LESOF ATTACK To 50 AT A MACH NUBER OF 4.07 By F?cedM. Smith SIMMARY - An investigation has been conducted in the Langley 9- by g-inch Mach nmber 4 blowdown jet to determine the aerodynamic characteristics of two double-wedge-section delta wings of aspect ratio 1.3 and 2.3 to angles of attack of d“ o

3、 at a Mach number of 4.07 snd Reynolds nmbers of 6.0 and 5.3 x 10 , respectively. -The results of the investigation are ccanpared with the predictions of linear theory, two-dimensional shock-expansion theory, Newtonian-impact theory, and a method which utilizes the shock-wave and expansion-wave equa

4、tions expanded by the two-dimensional hypersonic-flow similarity parameter. Linear theory, although fortuitously, generally gives the best predictions for all components. The results of this investigation extend a trend established in lower Mach nmber tests that the max$num lift coefficient for low-

5、 aspect-ratio delta wings decreases with increasing Mach nmber. The results also extend to a Mach number of 4.07 the trend indicated by lower Mach number tests that the angle of attack for maximum lift coef- ficFent ticreases with increasing Mach number. INTRODUJTION Numerous expertients have been m

6、ade to determine the supersonic aerodynamic chsracteristics of low-aspect-ratio delta wings at low and moderate angles of attack (for example, refs. 1 to 5). Relatively few tests have been made, however, at high angles of attack (above sn angle of attack of 30) and these data sre limited to a maximu

7、m Mach number of 3.36 (refs. 6 to 8 and unpublished-data.obtained at the Ames Aeronautical Laboratory). This shortage of high-angle supersonic data leaves the designer with no empirical results upon which to base his predictions of the maxim= lift and other wing characteristics at high HADC ADJ 57-5

8、007 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACA RM L57ED2 angles. It also precludes a ccxnpsrison of theoretical methods with experimental results to determine which theoretical methods best predict the high-angle-of-attack and high Mach n

9、umber wing chsracteristics. The present investigation, instigated by the lack of experimental data, was conducted on two low-aspect-ratio (1.33 and 2.31) double-wedge- section delta wings in the Langley 9- by g-inch Mach number 4 blowdown jet. In this investigation, normal force, chord force-, pitch

10、ing mane these humidities should be low enough to eliminate water-condensation effects. The test-section static temperature-and pressure did not reach values for which liquefaction of the air would occur. .- - MODELS The models consisted of two steel semispan delta wings having, respectively, semiap

11、ex angles of 18.4 and 3o“, aspect ratios of 1.33 and 2.31, and double-wedge sections 8 percent and 5 percent thick. The wings are shown in schematic form as figure 2. PRECISION OF DATA The maximum inaccuracies of the experimental angles, forces, and moments due to balsnce and recording equipment lim

12、itations, and the t average repeatability of the system have been estimated and are presented in the following table: Value .- Accuracy FL +0.1 fl.010 CD . .- . .-. K).cqo cm ; . ; . ; .-;-i . -i-i -. i . : RM A7IlO, 1947. 3. Ellis, Macon C., Jr., and Hasel, Lowell E.: Preliminary Investiga tion at

13、Supersonic Speeds of Trianguls and Sweptback Wings. NACA 9% 1955; 1349. 4. Tniaanri;-Eaward F., and DmTning, Robert W.: Aerodynamic Characteristics of Two Delta Wings at Mach Number 4.04 and Correlations of Lift and Minimum-Drag Data for Delta Wings at Mach Numbers From 3.62 to-6.9. NACA RM L52Kl9,

14、1932. - 5. Dunning, Robert-W., and Smith, Fred M.: Aerodynamic Characteristics of Two Delta Wings and Two Trapezoidal Wings at Mach Number 4.04. NACA RM L33D3Oa, 1933. , 6. Gallagher, James J., and Mueller, James N.: An Investigation of the Maximum Lift of Wings at Supersonic Speeds. CA Rep. 1227, 1

15、935. (Supersedes NACA RM L7JlO.) 7. Raattari, George E.: Pressure Distributions on !lYiangulm and Rectangular Wings to High Angles of Attack - Mach Nmnbers 1.45 and 1.9. NACA RM A34D19, 19%. 8. Kaattszi, George E.: Pressure Distributions on!h9.angular and Rectangular Wings to High Angles of Attack -

16、 Mach Numbers 2.46 and 3.36. NACA RM A54Xl2, 1935. 9. Dorrance, William H.: Two-Dimensional Airfoils at Moderate Hypersonic Velocities. Jour. Aero. Sci., vol. 19, no. 9, Sept. 1952, PP. 393-6oo. 10. Ulmann; Edward F.,and Lord, Douglas R.: An Investigation of Flow Chsracteristics at Mach Number 4.04

17、Over 6- and g-Percent;Thick Symmetrical Circular-Arc Airfoils Having 30-Percerrt-Chord Trailing- Edge Flaps. ws F E. R.: The Turbulent Boundary Layer for Ccmpressible Fluids on a Flat Plate With Heat Transfer. Rep. No. AL-997, North American Aviation, Inc., Jan. 27, lgw. 15. Boatright, William B.: E

18、xperimental Study and Analysis of Loading and Pressure Distributions on Delta Wings Due to Thickness and to Angle of Attack at Supersonic Speeds. NACA RM 56114, 1956. . 16. Ulmann, Edward F., and B aspect-ratio-l.33 delta wing; .E = 18.4O %c %I (1) (L/D)- Experiment 0.0150 0.0093 4.78 Linear theory

19、l o177 .oll7 4.65 Shock-expansion theory .0185 .0108 4.95 Newtonian- impact theory .0050 .0052 3.35 Dorrances method (ref. 9) .o18g .0107 4.57 Wing 2; aspect-ratio-2.Xdelta wiqg; e = 200 Experiment 0.0184 0.0061 6.57 Linear theory l o177 .oo65 6.106 Shock-expansion theory 00177 .0064 6.31 Newtonian-

20、impac.t theory .002g .0040 3.81 Dorrances method (rek9) .0180 .oo60 6.25 All theoretical predictions for Cm contain a skin- friction drag coefficient computed from references 13 and 14 (O.OOb3 for wing 1 and 0.0038 for wing 2). L Provided by IHSNot for ResaleNo reproduction or networking permitted w

21、ithout license from IHS-,-,-NACA BM L57EO2 13 Figure l.- Schematic diagram of Langley g- by g-inch Mach number 4 blow- down jet showxLng:mod,el and balance arrangement. f : i Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 NACA RM L57EO2 * -b-P- m

22、 wing 1 9 l . - Leading edge wing 2 Figure 2.- Schenlatic diagrams of test wings. DFmensions are in inches. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-L-57-1568 Figure 3.- Photograph of wing 1 showing the regions of l.adnar and turbu- lent bound

23、ary hyer. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-16 NACA RM L57EO2 Figure 4.- Normal-force coefficients of two delta wings at M = 4.07. Flagged symbols represent check points. . Provided by IHSNot for ResaleNo reproduction or networking perm

24、itted without license from IHS-,-,-.aa .72 . la 1 0 CL Expsrlment - cpJcosa f- (a) Wing 1. Figure 5.- Lift coefficients of two delta wings at M = 4.07. Fl symbols represent check points. .agged Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.S6 .a8

25、.%o .72 .a4 .56 .32 0 -.m t I c- -8 0 8 18 24 32 40 42 66 (L, ciag (b) Wing 2. Figure 5.- Concluded. . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM L57EO2 19 .7a. .32 II I I I (a) Wing 1. Figure 6.- Drag coefficients of two delta wFngs at

26、M = 4.07. symbols represent check points. Flagged Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-20 NACA RM L57E02 .w .86 .80 .72 .w t-t-t-m I ) , t I I I i i (b) Wing 2. Figure 6.- Concluded. Provided by IHSNot for ResaleNo reproduction or networki

27、ng permitted without license from IHS-,-,-NACA RM L57FiO2 - 21 .04 .03 / / / , / / / / / t i I I I 4 I I I L - Reference 8 -8 cl 8 16 24 32 40 48 56 =I deg Figure 7.- Pitch- mcment and chordwise center of pressure of two delta wings at M = 4.07. Flagged symbols represent check points. Provided by IH

28、SNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-22 NACA J3M L57F102 90 70 -8 0 B 18 24 32 40 48 58 a, deg (b) Wing 2. Figure 7.- Concluded. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA RM L57EO2 23 40 90 zl

29、 10 I I I I I I -8 0 8 16 24 32 40 48 56 a, wf (a Wing 1. Figure 8.- Wing-root bending moments and spanwise centers of pressure of two delta wings at M = 4.07. Flagged symbols indicate check points. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NAC

30、A FM 57302 -. 08 80 Eo - 40 30 20 10 -8 0 8 16 24 32 40 48 -56 a, w b) Wing 2. Figure 8.- Concluded. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-:M NACA RM L57EC2 25 , ” 2 . % 3 1 v .m .ed .66 .64 .d2 .eQ l (a) Wing 1. .m .68 .66 0, c&y 1 Center

31、I Linear I I 60 of area, / I I- _ I 24 .Z6 -28 .-SO -32 .34 -36 .38 -40 -42 Spsnwiee location, */b (b) Wing 2. Figure 9.- Center-of-pressure travel for two delta wings at M = 4.07. Flagged symbols indicate check points. Provided by IHSNot for ResaleNo reproduction or networking permitted without lic

32、ense from IHS-,-,-26 NACA IUd L57E02 1.2 A SGlrce I . h 0 1.3 Present -cl 2.3 teats mfs. 7, 8, bl. m I I AAL 0 2.0 (a) Maximum lift coefficient. . (b) Angle of attack for maximum lift. Figure lO.- Effect of Mach number on maximum lift of-several low-aspect- ratio delta wings. Provided by IHSNot for

33、ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA FM L57EO2 27 1 0 (a) Wing 1. -3 0 a Id 24 22 40 48 63 =l dt9 (b) Wing 2. Figure ll.- Lift-drag ratios of two delta wings at M = 4.07. nagged symbols indicate check points. NACA - Lnmtey Fteld, VP. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1