ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:345.79KB ,
资源ID:836152      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836152.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TM-0999-1941 Stress analysis of circular frames《圆形框架的应力分析》.pdf)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TM-0999-1941 Stress analysis of circular frames《圆形框架的应力分析》.pdf

1、4.!, .distance of shear flow from center., ., .,., ;:.,.,:.” ,!.distance of shear flow from neutral fiber.,e, . . . , ,., , .:,., : . ,.j.,x distance of s”hear.:center from “centerM moment*llBerechnung der Be.a,fisprchung.kreisftlrmiger Ringspante. 11Luftfahrtforscnung , vol. 1”8,no= 4“,April 22, 19

2、41, pp.122-127.II . -. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2BN2x8larvid10RcantheXAGA Technical Mernorandnrn No. 99? ;:, ;- .bending moment .,normal force,. .,.transverse force . .statically undetermined quantity”load and coeffi.cient, re

3、spect ively. , .,.:1-1;.THE FRAME IQU.ILIB.RIUM,. ;, ; ,”- . ,. .,For the.”ayTli:cAtioh of transverse. forces in a circ-,.Rshell with large ratio , circuli:rf.rarnesare Pr”o.-.ed. They are in equilibrium with the concentratedds and the shear forces from the shell. Eech loadinghe divided into the tra

4、nsverse force passing throughelastic centroid of the shell and the moment (fig. 1).ingsheala).WithTheuncle,r fltransverse force produces, as a result O”fbendr transverse force, a sinusoidally distributedow in the shell that reaches o:the frame” (fig.,?-s = :s.:denoting the mfunctionrepresents theThe

5、 distafor sinusoidalxomentsheI =ITR3Sof inertia of thearTsfl?owJ?_fiRva.nce of tva.riatiheon,.she(froR/Tsdu“(-) =g2riatar cm thchnical;Memo r,andum No-:.99%. 3, :The. shear” fl.o.whp;pli(ed-at$the f:ram as result of amoment is”con stant.”and ,mount.s:t.o(fig:.:1.6):, ,.,The, distance of the shear ce

6、nter of a circular half forconstant variation from the center: is.: :.- -, . . ,.x= ;R 1:57 R, .!, ,“The resulting shear,flow (fig. lc) follows from;Ts. - LoadHCa$e A”“ .Localized-Radial Force Acting on the Frame,.,. : ,. , i.”, ,.,:,. ,. .Ordinarily the circular frame is threefold staticallyundeter

7、mined. but. in this. In.st:anceand in the subsequentload cases the solution canbe considerably simplified bycleverly chosen sectionalization . At point O of theProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 MAGA Te6hnical .Membrload in figure2, th

8、e statically undetermined quantity isX3 = o. The.signs for carrying: out the anazysts are givenin figure 4. The depth of the sectional area of the frameis introduced by means of the ratio . The subsequent re-sults are valid for (fig. 3).=The elasticity equations red .The displacement quantities gene

9、rally follow atEI 6ik =J Bi Bk duDetermination of the bending moment curve B. in thestatically determined principal system referred to neutralfiber (fig. 4). The tangentially applied shear force ele-mentsets up s.tpoint T in teframe the bending momentdBo= - TS du eThe distance e follows fom the geom

10、etric relatione = R -r(sin CPo sin V + cos To COSQ)Then the bending moment B. at Q is:,9 QJ,!.BoG-S sin Q. do + sin J sin2 To dCPo +n l-l 09Ei.z+”r-:,iNo. :99 5; :,-.“)+-RBa=r (l- cos T) as a result of X2 = 1. : . ,. :For reasons of symmetry the “integration can te lim-ited to a half frame. .The,fol

11、lowing loads and factorsare obtained. , ,.fi :, . ,. :,”EI tjlo = r(,B1 % du= Pr - Rl/oEI “=o = Pr2” R(% -:2 “ “ “: EI il. = EI 623 ra+. ., :,.:. , .Solution of the elasticity eg.uations”gives the magnitudeof.the. st,a$,i,cally,undeter,min,edquantities, .r . , .:,4 : . :. . . . . ,. , ,.Xl = - =., .

12、X241-r $(-:-”iJ”“whence the ultimate bending moment !. =. . . . . . . .T( Pr. .g :in+=i-2TT ); C,os.?p:-.l. (1)., ,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . . . . ,.,. , .,., , . ,6 IJACA,?ec,hnical Memorandum. No. .999The final normal for

13、ce follows from.N= No +. XINl + X2N2 .,The normal force No in the statically determinedprincipal system at po$nt cp %s obtained by”splittingthe shear force element in the tangential component fol-lowed by integration from O to Q (fig. ”4“),dNo = - TS du COS ( - o)The norme.1 force distribution in th

14、e statically undeter-mined system then is ,.and the transverse force variation(2)(3)Figures 5 to 7 “show bending moments, normal force,and transverse force plotted against the frame circumfer-ence. The ratio. serves as parameter forR $= 1,r=le2, =o.8. . .R R .,Load Case 3Localized Moment Acting Alon

15、g a,Diameter of th;e Frame (fii 8)For this load the frame is simply statically unde-termined at point O. The elasticity equation readsProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA Technical Memorandum No. 999, 7630 + X3833 = o.Bending moments,

16、 normal force-, and -transverse -force in.thestatically determined principal system are obtained as forcase A. The loads and factors are:The statically undetermined quantity follows atThe final bending moment isthe final normal force is . N=-Qo= Cos CP- :,1furthermoreand .I N=% ( 2RCp Cos q)+ r sin

17、V - )1sin V. )1(7)(8j(9)B and Q are plotted in figures 13 and 14. N hs thesame aspct as Q in load case A (fig. 7).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . . . .,NACA Technical M“emorandumNo”O 99g”.: 9Localized Tangential Force Acting Alon

18、Then :,-. ., ,(B=%” 2 sin q) m-cpcoscp-sinq -q (lo)2R.L-(11)Figure 16 illustrates the bending moment distribution; NN in (Fig. lT. )By division of the ,forae P we get. , ,.,., .,., . . ,.,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- . -, ,.,.,NAC

19、A Technical Memorandum No. 999Load Case A: 0.9 1?= 1800 kg acting radiallyc: 0.4 F = 800, kg acting tangentiallyB: .40 mkg,.The resulting bending moment curve is fonnd, numerically by superposition of the results from equations(1), (7), and (4), or by graphical superpositin of thebending moment curv

20、es from the basic losds illustrated infigures 5, 13, and 9. The same method applies to thenormal and the transverse force. Of gretest interest isthe knowledge of the lngitudinal stresses from the bend-ing moments and normal forces.BENDING MOMENTS (mkg) IN FRAME FROMTHE NUMERICAL SOLUTIONi It90 “i80

21、180 270 360A “ “”-:7.2 I 53,9 -11. -141.5*53.9” -i7 .2-3.0 0 0 3.0 0B., , ,. ,: ,2,+ : 20”0c a71 , 20.0 -:2.7: 0 ,Result -“37;2 53.6 -1”.:”“-121.5 5 - “” “l?or the stress analysis of the rivets or welds be-tween circular frame and shell the shear flow distributionis employed. It is computed by the m

22、ethod indicated insection II and has for the particular frame loading theaspect shown in figure 19. The maximum shear flow amountsto 26 kg/cm.v. SCOPE OF VALIDITY1. The solutions hold for circular frames withsmall sectional depth compared to curvature radius r.In this case the curved member acts sim

23、ilar to a straightmember. Hence the stress distribution was assumed linearand the cross sections presumed to remain plane. The ef-fect of the longitudinal and transverse forces on the dis-placement factors was disregarded.2. The bending stiffness of the shell plate comparedwith that of the circular

24、frame wa,s presumed to be small.3. The departure of the frame contour from the cir-cular shape due to elastic strain was discounted.Translation by J. Vanier,National Advisory Committeefor Aeronautics,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-3?

25、3cIF Figure 1.-P 2W L. -,.,aEquilibriumof frame and divisionintobasic load cases.;.fof ratio r/R by equal Fiyme 4.- Identificationof Bo, I?o,and SiB. cocoaProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-, , , -. -lEACATechnical Memorandum Ho. 999 Fig

26、s. 5,6,7,8afo f K /“ i /405 I . , ,.0 i /I 97 Wo0 1 2703# oh/ 10aosL*-423 1Figure 5.- Bending moments underradial load.oFigure 6.- Normal forces underradial load.(.M rB,= 2n Rslnv +NO= moment loWIlg.Figure 7.- Transverse forces under radialload, concurrent normal forcesunder tangential load (distanc

27、e r).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . . . HAOA Technioal Memorandum No. 999 rigs. 9,10,11,3.2.a30Kwafo0 0 0-am-azo(230Figure 9.- Bending momente under Pigure 10.- IJormalforces undermoment loading.6?30A I I I I I I I I I I I 1075/

28、Ii-u-a-amoment loading.Figure 12.- Load case C;tangential loading(distance r). Figure 11.- Transverse forces undermoment loading.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA Technical Memorandum No. 999 Figs. 13,14,15,16f%06 / K f ao4 , q,. -

29、 - -, / “ o0Figure 14. - Transverse forces undertangential loading(distance r).ao81Ii I I I I I I IFigure 13.- Bending moments undertangential loading(distance r).Figure 15.- Load case D;tangential loading(distance r).Figure 16.- Bending moments undertangential loading(distance r).:3,*!.Provided by

30、IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-IUCA Technical Memorandum No. 999 rigs. 17,18,19.,. , -Figure 18.-Bendingmomentsandnormalforces.Figure 17.- Sample frloading./P. 4970 Kg600- 60 n/ (kg - mkg 300 - 30 “ j I / /N -8 I I 78000 -o I/ ,90 h/z 700 / 360f

31、 300 -30 I “./l / / ! ,/ ! !/ . , 600 -60 /-900 90 1. f ,/! %20-750 Rigure19.-Magnitude “”andvariationof shearflow atframe.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1