ImageVerifierCode 换一换
格式:PDF , 页数:26 ,大小:530.41KB ,
资源ID:836159      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836159.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TM-1285-1950 Investigations of the wall-shearing stress in turbulent boundary layers《在混乱边界层的墙体抗剪应力的研究》.pdf)为本站会员(medalangle361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TM-1285-1950 Investigations of the wall-shearing stress in turbulent boundary layers《在混乱边界层的墙体抗剪应力的研究》.pdf

1、NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICALMEMORANDUM1285LOANCOPY: RETURNTOAFWL TECHNICAL LIBRARYKIRTLAND AFBs NC M./INVESTIGATIONSOF THEWALL-SHEARINGSTRESSINTURBULENTBOUNDARYLAYERSBy H. LudwiegandW. TillmannTranslationof “Untersuchungeniiberdie Wandschubsparumngin turbulentenReibungsschichten”

2、WashingtonMay1950Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICELME240MNIIJM1285 . .INVESTIGATIONSOFTHEWiLL-SHEARINGSTRESSINTURBULENTBOUNDARYLNERS* - -ByH.LudwiegandW.Tillmsnn. .SUMMARYBecauseoftheunsat

3、isfactorystateofknowledgeconcerningthesurfaceshearingstressofboundarylayerswithpressuregradients,theproblemisreexamined.Itisfoundthatforgeneralturbulentboundarylayers.inwallproximity,thatis,inthelsminsrsublayer,inthetransitionzoneandinthepartofthecompleteturbulentzonenearthewall,thesameuniversallawa

4、ppliesasfortheylateflow.Fromthegeneralvalidityofthislawa formulawasdeducedforthelocalhag coeffi-cientcfr,inwhichcf dependsonlyontheReymoldsnumberRe formedwiththemomentumthicknesssndona profilepsrametery. Thisrelationwasconfirmedsatisfactorilybydirectmeasurementswitha newinstrument.Therelatedfriction

5、coefficientcf canthenbedeterminedsimplyfromtheknownvelocityprofile. .-.l?romtheformulafor Cft itfollows,inagreementwiththetests,thatthe cf valuesforboundarylayerswithacceleratingsnddecele-“-ratingpressurearehigherandlower,respectively,thsafortheplate flowatequalReynoldsnumber.Thus.forgreaterReynolds

6、numberssmalllocaldragcoefficientsareattainablenotonlybykeepingtheboundarylayerlaminarbutalsobyappropriatepressurevariationinturbulentboundarylayers.Theriseofthefrictioncoefficienttoamultipleofthatforplateflowinboundarylayerswithpressurerise,asclaimedbyvariousworkers,isheretithdisproved.-.-1.INTRODUC

7、TIONThewall+hesringstressesinlsminarboundsrylayerscanbecom-putedona strictlytheoreticalbasis,sincetherelationshipbetweenvelocityprofilesndshearingstressisknown.But,thisprocedurecannotbeappliedtotheturbulentboundsrylayerssincetherelationship“*“UntersuchungenfiberdieWsmlschubspannunginturbulentenReibu

8、ngsschichten.“ ,.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATM1285fortheshearingstresses,duetotheturbulentexchti-geisstillunknown.Forthisreason,thelawsforturbulentwallfrictionmustbedeterminedbyexperimentalvest-igations.Suchinvestigations“

9、fallintotwoclasses,termedforbrevity,plateflows”andpipeandchanuelflows.”Theapproximateformulasforthefrictiondrag,deducedbythevariousinvesti-gatorsfromthetestdata,areinagreementtosomeextent.Someinvestigationshavebeenmadealsoonboundarylayerswithpressuregradients,bothaccelerating-anddecelerating,butthed

10、ataonwallfrictionareeitherabsentaltogetherorpartlyUnsatisfactory.Theseinvestigationsweremadeina channelofcircularsection(refer-ence1)or,inmostcases.ofrectangularsection(references2,34and5). Forthelatter,onechannelwallwasdesignedasflattestplate,onwhichtheboundarylayertobeexploredwasmeasured.Theopposi

11、tewallwasadjustabletothedesiredpressuredistribution.Itwasspacedfarenoughfromtheexperimentalsurfacetomaintaina corewithpotentialflowbetweenthetwoboundarylayers(freeboundarylayer).Thewall+hesringstreswasdeterminedfromthemeasuredvelocitypro-filebymeansofvonKarmchcancelthetwo-dimensional.ityoftheflowass

12、umedaccordingsmomentumequationfortheinterpretation,andarepr=tovonKarmansumablyresponsiblefortheimprobableresultsoftheaforementionedauthors.Someoftheseauthorshadobservedthat,ingreatlyretardedflows,thelocal.dragcoefficientCf(=Tw/Q,Tw= wall-shesringstress,Q thedynamicpressureoutsidetheboundarylaer)rose

13、abruptlytoamultipleofitsoriginalvalueaftertravelinga certaindistauceinflowdirection,ratherthsmdecreased,asactually52.J”;-$w =momentumthiclmessofboundary52layer,Re=UT =Reynov=kinematicviscosity.Qpsntityg inequation(1)isa fixedfunctionis,naturally,differentforplate,pipe,andchanneldependenceOf on Re is

14、verysmall,thatis,thedifferverylittlefordifferentReynoldsnubers.which,however,“-flow.Thevelocityprofiles(b)Thelocalfrictioncoefficientcf canalmysbereresentedintheformCf=F(Re) (2)(Cff= Tw/: $; TV = wall.+hearingstress;p =density).QpantityF isagaina fixedfunctionforplate,pipe,andchannel” “flow;F canbec

15、cxuputedforplateflowbythemomentmequationwhen gisknown,becausethetheboundarylayer.(c)Forthepartrelationtotalfrictiondragapearsaslossofmomentuminofthevelocityprofilesnearthewall,theu ()fU*Y=*u 7-wasobtained. v(U*=TWP “= shearifitressvelocity)(3)lInthisformula,theReynoldsnumberformedwiththemomentumthic

16、kness52 waschosenascharacteristicquantitybecauseitismoreappropriateforboundarylayerswithvariableoutsideressure. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACA1141285IIis relationholdstruewiththessmefunctionf-forthepart .ofplate,pipe,orchanne

17、lflownexttothewall(ProvidedthattheU*Yfi values arenottoosmallfullyturbulentzonev )50 ,equstion(3) can bereplacedveryaccuratelybyu *=alog* y.+bua and b beinguniversalconstants.TMsapproximatedbya powerlawl/11u() U*Y=*u TtheapproximateI?onmla(3a) -logarithmiclawcanbe .-(Sb).whereC and n areconstantswhi

18、charestillsomewhatdependentonthe u*y/vzoneforwhichtheapproximationistobeespeciallygood.AsalreadystatedinLudwiegtsreport(reference7), it is tobe ,expectedthattheuniversallaw,equation(3) or (Sa),is,asidefromtheplate,pipe,andchsnnelflow,applicablealsotomoregeneralizedboundary-layerflowsinwallproximity.

19、Itnemely,thatwhenthebounary-layerprofilesareplottedinthemanneroflogu/U againstlogy/52(fig,1),parallelstraightlines-areobtainedforsmally/52.Consequently,uisinallcasesproportionaltothesamepowerof y.Fromtheslopeofthestraightlines,thispowerfollowsas 0.13= , whichisin.goodagreementwithequation(Sb)forthe

20、u*y/Vrangeinquestion.However,thisstill.isnocompellingproof-ofthevalidityofequation(Sb)forthereasonthat-thepowerof y caubecheckedbyprofilemeasure-ment,butnottheconstentC,becauseu* Isunknown.Withthevalidityof*equation(3)fortheportionoftheboundarylayernexttothewall,u and,hence,w and cf dependonlyonthev

21、elocityprofileandthematerl.al-constantsoftheflowingmedium;so,whenthevelocityprofileisknown,cfocembecomputed.A COl?re-spndingrelationbetweencf,Re,anda profileparemeteryettobedefinedisderivedinthefollowing.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-

22、,-NACA!lML285 5%2Theterm y= isintroducedasprofileameter;u2 isudefinedasfollows:Ifthelaw,equations(3),(3a),and(Sb),isvalidfor y valuesgreaterthm 52,then u2 issimplythevalueof uatthepointy = .32.But,ifthelaw,uations(3),(3a),and(3b)Yappliesonlyto y valuessmallerthan 52)then U2 isthevaluewhichu wouldass

23、umeifthelaw,Equations(3),(3a),ad (3),wrapplicableuptothepointy =82. Thus,thedoublelogarithmic_plottingof u/U againsty/52(fig.1)givestheprofileparameter7,Ywhentherectilinearpartoftheprofileisextendedasfaras = 182 ,52tsre fromfigure1.andthecorrespondingvalue”ofuThe derivationoftheaboventiohedrelationb

24、etweencf,Re,and y proceedsfromequation(3).Theprofileparsmeterisintroducedbyputtingy = 62 andu2=*uTheequationstatesad U5252/V;therefo(4)thata directconnectionexistsbetweenu*/u52u*()U5252= hl+j v2mustbeapplicable,thefunctionh beingdefinedbyfunctionf._btroductionof2Gruscitz(reference2)definedthequantit

25、yv =1-profileparsmeter;butby U52 thevslueqf u at Y = 52 iSalwaysmeant.-.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6gives,aftersimplerearrangementCf= 2y2h2(ReForabbreviation,thefunctionisNACATM 1285-. .-7)=72H(Re7) (5)written2h2=H. ”So,foralltu

26、rbulentboundary-layerprofileswhosepartnexttothewallisrepresentedbythegenerallqw,equation(3),thefrictioncoefficientisgivenintheformofequation(5).Todefinethefunc- ,tionsh and H inthisequation,equation(4)couldbereplaced,fortheargumentinquestioninaccordancewithequation(3a),byU*andnumericallysolvedfor =h

27、. Butsincetheconstantsa and b .u2inequation(3a)arenotaccuratelyenoughknown,thefollowingmethcdofdefiningH seemstobemoreappropriate.Byequation(1),theprofileparameterfortheprofilesoftheplateflow,designatedYo,iSOY dependenton Rethence“-70 = yo(Re). Oninsertingthisvalueinequation(5),thisequationmustsuppl

28、ythedragcoefficientCf fortheplateflow.Thus,bearinginmindequation(2),thefunctionalequationfor H followsas70%(Reyo)=F(Re) (6)whereF(Re)isthefrictioncoefficientoftheplateflow.This equation, whichmustbefulfllledforall Re,definitelydefinesthe .-functionH forknownfunctionsF(Re)and 70(Re).AbbreviatingRe70(

29、Re)= giterationgivesforRethechainfunctionERe=T-707()70“-.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-7NACATMu85which,insertedineation(6)givesfor Hsnd,whenthefunctionH inequation(5)isthenreplacedbytheprecedingexpression,Since y. varies very little

30、with Re (fig.2), “theofthechainfunctionissogoodthatinthefirstfactorofthefirstdeureeandinthesecondfactor,thetermofhavetobeincl7 -0,7642: Re= 8.00 X“H12= 1.267;y- 0.7263: Re-7.98 x03H12= 1.337; Y“=0.8884: Re= 1.02 x 04*12 = 1.4; 7% (),569 .Figure7.- Severalvelocityprofilesfromtestseriese andfindimensi

31、onless -double-logarithmicrepresentation.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . .20101.0Comtmtprmmmg Re-l,tmxlosconstantpmearre endtmtmlem?id* RE-mlx loga75Comtmt Pra8ann3 aud stripm -1.21 x 104a71 a11a11a71 a11* * #=./15 20 25 35s!#Figure 8.- Severalvelocityprofiles from test serSes e andfwithuniversallaw,equation(34,inwSllproximity. .,1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1