ImageVerifierCode 换一换
格式:PDF , 页数:25 ,大小:812.15KB ,
资源ID:836166      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836166.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TM-737-1934 Conversion of energy in cross-sectional divergences under different conditions of inflow《在流入量不同条件下代表性分歧的能量转换》.pdf)为本站会员(inwarn120)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TM-737-1934 Conversion of energy in cross-sectional divergences under different conditions of inflow《在流入量不同条件下代表性分歧的能量转换》.pdf

1、.3,complete conversion requires a discharge length which de-peilds upon the included angleand the velocity distribu-tion in tile entrance section For that reasou the effi-tie:.lcy(ratio of rise of pressure energy to difference ofkinetic energy of mean veloci,ty) was determined, once forthe diffuser

2、alone, then with the discharge le;lgth neces-sary for complete conversion. These efficiencies are, inpart, widely at variauce, and it was found that the veloc-ity distrilmtion in tile entrance section affects the pres-sure conversion very profoucdly in the diffuser, alone,*but only very little in th

3、e diffuser with exit length,.-_A comparison with Gibson!s experiments at a greater open-ing ratio, concedes the efficiency to be dependent on thisratio, especially for large included angles. Completeelucidation of”thins interdependence awaits further inves-tigations as comparative quantities ,The co

4、nversion losses proportionate to tlje losses by sudden divergence (Caraotloss) are preferable to the efficiency.fiorder .to compare diffusers with different ,energyIdistributions, we assume as efficiency of the. diffuserwith entrance length,ithe ratio of actual rise of energy. . . a,.,k. , INTiOtiUC

5、TIOti,.;.: ,- , ,: , . . .”. . .,., ,.,.: .,. ,. ,. Y-, ,., . Te” results of previ,ous ex,8,rirnent.s”ol,clrcular ,”con-.:;.”;,.“.”.,.i.cal,”,divergent channels,. assume a particu,lai “signifi-“ca.n”c”,ti.i,tinthe scope” of the pr.esen,paper. Figure 1 isa“i,a.tep,tto illustrate the re:u:l,tso,fAndra

6、s. (referencel-,of “Pranciti(reference 2), 3anninger (reference 3), andIiiffart.“(”reference 4) in form of an efticieilcy, qo versus,1.f“tli.eincluded angle 8:. . ,. : P+Pr .2qo=p- .-. -:- .,.,.#12 2) ,:. .” . . ,- *2.,. : , ., ,.,wher.e.in.:,p,”=.s”taticpressure, if= mean velocjty ,in crossSe:dtXOn

7、”:,V“ = d:erisity, subscripts 1 and 2 ther.espective-:1”n#rTo”w;, , .,.,: .,. L. ,.“B,j., .Bu-t his, results. are uncer-tai.nsin”cehe failed to,givd. any exa:ct”definition of the, I.spiral flow or of “the recor,d!dpress ue” . : ,.,.:.The present experirents were made wit,h pies of circu-lar section

8、with straight” conical divergences in air for. . : ,i .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.:,:. .,“+ , ,- ,) ! , , ,.;C:o.q,sta.n,:y”dlu,de:“of:.“fl”o”i+.:f“,h”inelud.e.d:angl e 20 with-c:o,:n:sjja,:.cioss-se“ct-ind”tiat”io F/JF2” was .v

9、ari.edbetw.een8 +:26“%ulct”=go .,:., ,.,., ,.:,:. .,. . -.,.,., “I: :,!The spiral flow was prodii.c”ds:by:a guide apparatus.(fan) (fig. .5) mounted between the entrance length and tne.transit ion,pie”cefrom:h”edfi:sta+ta:fi:til%a.i:+elocityas with,”a rigidbody% The flow-id%re+t”ion”ik”ilia”.with tan

10、 .ialcotiponek:t;and w = axial. co:np,o./.nent of veoez.t”y. “Thr“$-.-:;:“*mm X .03937 = incProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-iKA.C.,.,.Tecllriic9T”cxman.dun No. 737 5. . . ,.:. ., . . agd, the $ng.e.vtial doxapone.n,t,.u becomes?f,velo

11、city c,. . . .:. .,.,., -. -herefn” r“y: krbitra-,rrradius, R= pip”eradi,u”s; uR = “t:inJ”v,.elocity;.at “yall,” a:nd k“,= tingie o!:1Qw di-re-.c.til-oiiat, tb wall” .The.8pira,l.momentufi,“ , .,;- !.:., . .must equal the moment of the lift of the blades,P” ,r d A“= - W2Can z t: r I,dP”. ” .y,c .q2i

12、e efficiency is the ratio:,of the actual rise in pressureeneray to-tne difference in.kirietic energies-,1;zp2.w2:d -:L . . :pll:d .-,;,.,m H n- - - -_ . - - .-.- =total,:;:”;C12 22 “$C,22;2; ,;”:,., ,m d,l?- , . /). -Provided by IHSNot for ResaleNo reproduction or networking permitted without licens

13、e from IHS-,-,-/N.A. C.A, .Tecnnicql Memorandum No. 737 7,.,., ,”.”“.”,., :-. . . . .The representative trend of the pressure at the wall,“:illu.strated “iifigurb”7;“”:rov”esthat the pressur”e conver- _sior. is not conpleted in “tfieexit s“.ect.io”nof the diffuser,that there is rather ,afuri?er rise

14、 of pressure in theds.cliarge cllafnbl, As” af%u”lt”; two efficiencies ”can bededuced.nam?ely:. , .7:.:,.! , ,. .-.,. ,.VI fo.r”;.the.22B w2 ; ,rp;: ( 4a).-/ , ,. /- , 27 1.- :.: /?! , ,:The definit ioilof the efficiency solely on the basis of “”illeanvelocity E?, jields an efficiency in accord with

15、equatioa (1) WLOS6 connection with Ttotal is given in, .,.For nearl re”ctanguiar velocity distributions, i.ea,.w=i, A becOmes = 3 W 1 aild tilerof”oret m = ntotalOutside of the rccta;gul?.r“di”stibution of velocity the de- aveloped turbuleat distribution produced with sufficiently).Provided by IHSNo

16、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-.By lt.;,AfiC,.A, Techil.ical,ioandug $To,. 37 -1.ww: e.nt?acelength, is mo:re rea.di-“amenabl.,eto calcula- t.ip.u.;andl:zst.h,ereforegiveq.ibre- ,:. , ,-., . ., ,. . . , ,-. . . . . . . . . .PrW$l *s”.hegrem (.r.efere

17、nc”e 6)”, accri”ing to.whichtfi.e;.poi%tiiesat-a .Reynolds Number o.f .?;,;:.,2,.x 105 areproportionate to the 1/7power of the wall,i,s,tance,dis-closes for the turbulent velocity distribution./ J“!: .:!.:,? , :,. , ,., ,., ,.!- Wj” 1/7.” : “ “ -: ( r-. = l-.$.“.-Wmax :R :,.:.: %.”.:“:.”, .,. .“, ,

18、Wnax being the velocity in the axis of the pipe Then.tlie:“mean velocity. is .,.:.-“ ,., ,.,., ., .-ii.- = om816.,:.wmax.rithe “relation of”the actual flow of kinetic k.seenunco- Lditionally cogent, the final result ,Pu = : (fil”z- w2) tan 8 with divrgent angles up to f)”.dep,icts the .,.3 .:,: . i=

19、 .,.resul.t;sfor snooth pipes very WO1l. :.:”,!. . . ., :. .,.,. “, ., .,. . . . . ., .1A 1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-N*A. C.A. Technical !ier.ora)dumNo.737 97aAs regards the velocity distribution in the disch-argechallne_land co

20、nsequently .of B, no summary predictionscan be mad?,. Ihit otie result of the present investiga-.tion.i is that the velocity dis”tributfon in the eection ofmaximum pressure of the discharge channel is somewhat morecomplete than the developed turtmlent velocity distribu-tion and practically independe

21、nt of the angle of divergenceand,ofthe,distribution in inflow section.: . . The.evaluationgave ., -”-Figuring with a meaz”-B = 1.03 for turbulent velocitydistribution in the inflow section, and,wi.th, iw=.,.=”.,.lufll:nd =0. +2croSs -sec:onratioje .,o-btain”rT “:,. . = 1.05.TtotalThe pressure losses

22、 “pv, computable from equations(3) and (5) as . 2.A - 71“:p B .,l?2/“-.-.-.-.-= -._ _2, 2; (WI - W2 ) 1- (gL)2 “U72 )can be divided in”towall friction losses pr and conver-sion losses PU”* The former can be.defined like the .,”;losses in a straight pipe as i) v.: J“ .P P “.-,:4,.J”-”:.-.:.,;j 2 -2;,

23、. . . .:-:, ml - 2.,.;!,.,.!-. . 7 . .f j : 2-r.!;,.J:.,-, ,. 3, -“23% .,.,.:! ,.,. .,Taking cognizance of these frictional losses, it yields-.,.:”h . (3?2,=P1)! ATO .-_ = I+4tan,. - r?l 1,.- (1. ,.,-. 2 . ;).2 - .“,:,8;.,:,.,.,.for the”diffuser alone, and, .,. . :.”,. A+ _ _+ .,._7L,._l%4 tan (-y-

24、- “RF “,:. ,for the dif fnser mitll:.discharge chain-e”. . For spiral flow”, .equat.ion (3) gives.: .,2?2 y.-.“. .,: P2 w2 d - .,flpl 1 dl? .,totl = -_.-.+- _L0;.ti1P 12 ”Pc12W-dF-/c22 w2dF,rC2.= + AL,i,verein and P-= Pr=)+. l P 2 r. ,?:.Tor the special case of rigid spiral”U”= constantald w = W = c

25、onstant, and efficiezlcy can be deduced wilosefactors lend. t“nemselves nore readily to measurement. Tkeeilergy is computedas .F .2+p#JwdFE=J P(r=o) + p2 r . ,.:= P(r=o) .-2 “ o 2 R 31= “R”“ g 2 ;. .-L,.-.,.L. L 1Provided by IHSNot for ResaleNo reproduction or networking permitted without license fr

26、om IHS-,-,-.N.A.C.A T.achnical Memorandum. No.,737 11so-+liatthe energy.oequat ion. (2) can-be”.written, :., .,.-, P P -2, . .,., .PR1 -ti12 - R2 “Z”W2 - V “0. .,.,.,:, ,., .,;,and,f,ina,l.1-y,.t,e“.if,ci,ency , ., . . ,.:., : ,. ,. , .”=. R2-pRl- .-.P “_”2 - 2 “ (Wl - W2 ),.,:,. - .;(8).,. . .,. .“

27、O,bvio.usly“the thus-de”fnei,e,fficiebcy .“isvalid only forthi,s,;a.ssumed.s“p.iral”dis.trih.utiop and inappl”ic.able to otherdist.ri.:b,ut.io.ns. . ,.:., .,. ; . .,.,. ,., ., . El ;“.,2,.;,;s“4i%ut ion.(. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS

28、-,-,-12 N.A. CA.Te:h-nijcalMexnorandumNo. 737.,separately for differentand of the !spiral, flow,:w.er:;madeentrance lengths,Figure 8;slio.,y”Sthe:.”elocit.ydist ib.utions -.*:X = f(;:).,recorded. in pure. axial flow without diffuser. The profilewas symmetrical to the axis ofltfie:uppe;-:The istru”rn

29、e“:cr“epa-ncya-s”n”obtained :“”It”ijkghtbeliie to erroneous”measurement of the static pressure through th” wall “ori-fic es,* or it might have been caused b erroneous u,easure-melt of the tOt:ai fires”sur adjacent“-to”tie,tiall. Anothersource of error is the inevitable velocity fluctuation,since the

30、 pitot tube records the mean value of WZ withLr:espeetto”tirne”“fidis“coriseq-dentl:altiaysgreater than!: .:“(neanjz .“ , .From the velocity distribution we deduced the value.A, which compares thti”:flow “o.f:linetiicenergy per secoildwith the product of flow volume GL l? and tlekineticP (._L;:)2 “:

31、 .,.“energy of”mean veloe”ity,. =,0.0083,-Wl.2 .-.-.-_.-.-_._suhungen ,aq.W.l.ln:iod.el,len,!l3el in, 191.2.,:tilem,e.asu,r.g-=ilts .wer,ejmade w$,tz,a,i”OS9 gird.o.r,:i$ice,di,a.met8T,and, gav,e,static press tiresaproximately 0.8 percent too low.h.-Provided by IHSNot for ResaleNo reproduction or ne

32、tworking permitted without license from IHS-,-,-.-.xiii-. c ;AT6e.hnical Memdra.iwlum.Eo:.73?. 13!:This fi,gure .agr,ee.s.,mi.ththat o. ., ,- . ., , . . . . . .: ”.”. :. ,.for the individual sec”ions. The lack of symmetry with t“hepipe axis is du to inccuraci-q,s im .w,o,i.,s:tep“.int,egration . . ,

33、., . . , :r“ .,. r.“p”.=.pR”+ j P.U2 ii + .2sinz d.(.p,- P,) “., R R:,. .“,-.,.“.,.,.“ll;igu”res11-16 ive velocit components, u”/*l and *i/iversu”s rl/Rl. :The vales “ “the ,r”ings“totheother “half of the test diameter. , . ., .,.The i.nstrumen.%al a:ccuracy; again chec”ked”by coniparingthe. integra

34、tion result with that from the .standardnozzle,ranged within -1 percent and i-2percent. ,.The flow of energy- per second throug. ,.eachsectionwith spiral flow, was” determined as for axial flow andequated to the flow” energy per second of the mea-n velocity.These equations are:.I: “(:-); d,”,for the

35、 kinetic ”energy,. . a. . . ,.,.- .,.,-,.+ jF/yf al?,(Wlj ii. for the” spiral energy, , ,.,., : . . .,., ,. . . ”Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 N.A,G.A. Te.chni,calMemorandum No. 7371 ;p% :-, ,r-_ii; for the pressure energy,-1 - d

36、F, for the total energy.FI-2 WI WI.They are given in figure 17 versus entrance length t/D1 .PRThe plot also shows the pressure - at the pipe wallg2 .,r.o ,2W1 .and the pressure in the”pipe axis. b The actual diffuser tests.- They revealed the pres-.-_.-sure long the test section through holes in the

37、 walls, acase iiipoint being shown in figure 18. Trom these dia-grams the pressure pl in the entrance section is obtainedby extrapolation of the pressure carve in the entrancelength, the pressure p2I in the exit section by “extrapo-lation of the pressure curve in the discharge channel up to the disc

38、harge section of the-diffuser and pressurep2iI as maximum pressure in the discharge channel. (Com-pare fig. 17.) :.We start with an analysis of the investigation forpure axial flow. To define ie efficiency accordig to(4a)22 -Pitotal = ._._L9P -A. #)2-2- W12 1.F2/ F2 - - fF1(;: d conforma”oly to A as

39、 func-1.tion of the entrance length (fig. S). The value B =1F2F2(; d , lilcorrespoilds to the flow of kinetic,)energy per second in section F2 ,ust be defined from., I1.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.,I: N.A,:,C.A., Technical Memora

40、ndum No. 73”7 15j ,:,.,.:.,; -:.:,.,.:, ,.IL- the y,l.ocitydistrilmtion survey in section Pa ,., which,Ihmwqve is very difficult unless the flow is orderly.AS,:.,:”!,., . . . . ,. ,.“ f, ., . iP2 - P1)II =1 71.!.”. qtotal = - .-.-.- ._ .-.- 7,wlU?-j2 ,., j .:W23 dFfor irrotational flow with 2Dl entr

41、ance leilgth. Theseefficiencies are valid only for the diffuser” fitted withentran ce length. “The determination of other efficiencies,say-, according to equation (8), wherei only tfieall”:.“pressure and F2/F1 are evaluated, was omitted, becausethe coalitions LO = constant and v?=c could in no caseb

42、e exactly complied witil. The efficiency for the diffuseraione was also omitted because the ueasureme:t of the,ve-Jocity distribution and of the flow direction directl”y inthe exit section involves great obstacles aild even the. ex-trapolation of the wall pre,ssure”up to tile exit sectionengenders g

43、reater inaccuracy as a result of the marked”pressure gradient, especially with larce -$. ,.!.Tbe distance ta/D2 of the section of maximum”pres-sure from the discharge section of the diffuser is shown”iProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.

44、,+. -,Y. A.C. A. Technical lemoraridun loa71 737 19in figure 29 plotted against $8 for the three exploredSpiral f,low$q .Translation by J. Vanier,National Advisory Committeefor Aeronautics.RET?ERENOES1. Andres, K.: Versuche ber die Umsetzung on lfasserge-schwindigkeit in Druck. Mitteilungen uber For

45、sch-ungsarbeiten. V.D. Io (1909), p: 76-2. I?rancis: Lowell Eydr. Exper: 1883.3. Bnninger: 2S f.d. ges. Turbinenwesen 3 (1306), p. 12.4. Iiiffart, A.: ,lberVersuche mit Verdichtungsd:sen. Mit-teilungen uber Forschungsarbeiten* V.D,Ia (1922),pa 257.5. Gibson, A. H.: Proc. of Roy. Sot., London A 83 (1910),P“ 366.6. Karman, Th. v.: Zs f* ailg. Math. u. Hech. 1 (1921),p. 233*Hikuradse, J.: fiber turbulence asserstrmtmgen ingerad

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1