ImageVerifierCode 换一换
格式:PDF , 页数:54 ,大小:1.12MB ,
资源ID:836213      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836213.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-1451-1948 An investigation of aircraft heaters XXVII - distribution of heat-transfer rate in the entrance section of a circular tube《飞机加热器XXVII的研究 热传递比率在圆管进气道端的分布》.pdf)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-1451-1948 An investigation of aircraft heaters XXVII - distribution of heat-transfer rate in the entrance section of a circular tube《飞机加热器XXVII的研究 热传递比率在圆管进气道端的分布》.pdf

1、?.t+4 *.* ?wpfid ; i -=%NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICALNOTENo. 1451AN INVESTIGATION OF AIRCRAFT HEATERSXXVII-DISTRIBUTIONOF HEAT-TRANSFER RATEINTHE ENTRANCE. SECTION OF A CIRCULAR TUBEBy L.M. K. Boelter, G.Young,andH.w. IversenU+versity of California .=q-JlWashington jldy 1948 ._FOR

2、 bFENCEProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-IwrIoNALADVISORYCOMMITCEEFORAEROMMJTICSTECHNICALNYI!ENo;1451 31176013460432ANINVESTIWTIONOFAIRCRAFTHEATERSXXVII- D3!RmIONOFEXATJIX/ANSFERRATEINByL.= ENTRANCESECTIONOFA CIRCUIARTUBEM.K.Boelter,G.Y

3、oungendH.W.IversenSUM4ARYExperimentaldataonthevariationofthepointunitthermalconductanceintheentrancesectionofa circulartubearepresentedfor .16differentflowconditionsoftheenteringair.Resultsarecomparedwithvaluescalculatedfromexistinganalyticalsolutions.Theaverage(integratedman withlength)unitthermalc

4、onductanceIsslsocslculat%dforeightentering-airconditionsendfscoaredwithvaluesresultingfromsnal.yticalluhhods.h msnycasestheexperimentalvaluesareappreciablyhigherthanthosederivedfromecnzationswhiaharebasedonover-aid.dat-n onlongpipes.INTRODUCTIONThepresentinvestigationwasconductedtodeterminethedistri

5、butionofheat-transferrateresultingfroma variationoftheunitthermalconductanceattheentrancetoa tubeforvariouscondltionsofthe enteringfluid.Heretoforeexperimentaldatafortheunitthermalconductancefc( (intheequationq =fcA - ta) havebeenobtafnedasenaverageoverthstubelength.Equationsforthedeterminationof fc

6、 haveusuallybeenexpressedintermsofthefluidpropertiesandsom fixedphysicaldimensionofthesystem, .suchasthetubedi- ter.Inmanycases,when. itismoreimportanttohow thevalueofthetemperatureattheparticularpointalongtheheat-transfersurfacethantolnlowtheove rateofheattransfer,anaveragevalueoftheunitthermalcond

7、uctancefc isin-. adequate-endal valuef mustbedetermined.Theequationsforxtheunitthermalconductanceshouldthenbeexpressedintem ofavariablephysicaldimensionx.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-,:. .=,: -.-2 -HACATNNoo1451.Dataonthelocalunitc

8、onductancemaybeappliedtothedesignof-anexhaueasandalrheatexchanger.Forexample,thelifeofanexhaust-gasandairheatexchangermaydendonthedistributlonoftemperaturewlthlntheunit,whichdepnxlsonthevariationofthelocalunit conductancewithintheexchanger.Pointsofhightemperaturemayoftencausenwtalfailure,andregionso

9、flargetemperaturegradientscausedmgemnm thermalstresswhtchdecreasesthelifeoftheheater.A thoroughlnmwledgeofthedistributlonofthelocalorpointunitthermalconductancef wouldallowapredictlonoftheseeffects,andCxthusa properdesigncouldbeestablished.Theresultsofexperimentsreportedhereinshowthatthe f in,1 Cxth

10、e“entrsncesection ofa heatedcirculartubeIsverymuchgreaterthsnthatwhichwouldbepredictedfromequationsderivedfromexperimentsonverylongtubesenddependsonthetypeoffluidentrance.Theunitthermalconductancemaynotreacha constantvalueasfaras15 tubediamtersdownstream. =2 Thefollowingentranceconditions(fig.1)were

11、lnvestigated: .-(a)(b)()(d)(e)(f)($3)(h)(f)(J)(k)(1)(m)(n)(0)(P)BellnnuthBeltiuthtithonescreen3Bellmmthwithscreenholder .Bell.muthwithsixscreens Right-angle-edgeentranceBaxesharp-edgeentranceLarge-orificeentranceSmall-orificeentranceShortcalmlngsectionLOngcslmingsection45-cn.e-bendentrance90-ane-ben

12、dentrsnce90-$n$-bendentrancewithcalmingsection.45round-bendentrance90round-bendentrance180round-bendentrancelIntlrlspaperthe“entrancesection”16theinitialportionofthetubeInwhichthelocalunitthermalconductancefc isapproachingthecon-%stantvalueattaineddownstreaminthetube. .?orsmothpipeendconstanttubesur

13、facetemperature. .%versen(reference1)obtainedexperimentaldataforthiscaseandcomparedtheresultswiththeanalysesofLatzkoandofBoelter,Martlnelli,andassociates.-. . =. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Theresultsoftests(a)to(d)illustratetheef

14、fectsofturbulencesndtests(a),(1),and(J)showtheeffectsofentrancevelocitydistribution.Theremainderofthetestsshowtheeffectofthevariousnnrepracticaltentranceconditions,inwhicheddyingflow ispresent.Latzko(reference2)developedanalytical=thcdeforapproximatingthevsriatlonof the pointunitthermal.conductancef

15、orthreeentering-g- contions:CaseI: Bothvelocityandtemperaturedistributionsareuniformoverthecrosssectionattheentrance.(Thisisapproximatelytheactualsystimofaheatingsectionwithabellmmthattheentrance.)CaseII: Thevelocltydistributionatthsentrancecorrespondstothatforfullydevelopedturbulentflow,andthetempe

16、raturedistributionisuniformoverthecrosssectionattheentrance.(Theactualsystemmaybevisualizedasaheatingsectionwitha longcalmingsectionupstream.)CaseIII: TheintermediatecasebetweencasesI andII,inwhichthecaladngsectionofcaseIIistooshortforthefluidtohaveattaineda fullydevelopedvelocftydistributionbeforee

17、nteringtheheatingsection.(SeeappendixA fordescriptionofanalytical methods.)A mthodnotedinreference3approximatesthevexlationofthepointunitthermalconductanceforairforeaseI. Anexpressionforestimatingtheintegratedaverageunitthemmzlconductanceforanylengthofheatingsecttoneisalsodevelopedinreference3.= add

18、itiontothepointunitthermalconductance,theaverageunitthermal.conductanceforthecirculartubewerecalculatedasa functionoftubelengthforeightexperimmtelconditions(fig.15casesasbg,h,i,J,k,md 2). Fortwooftheseconditfonatheaverageunitthermalconductenzeawereanalyticallyobtainedbyusingtheequationsfor fCxgivenb

19、yLatzko,byBoelterandhisassociates,andbyIversen.Theaversgeunitthermalconductance,themmn valuetakenovertheentirelengthoftubeinquestion,isobtainedfromthefollowingequationzf 1. =- faxCav Zo Cx. Theeffectoftheenterinwhereaseddyingflowisconsideredtobethatcharac-terizedbyrelativelylargescalevortices,etc.Pr

20、ovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.-=-4 l?ACATNHo.1451 “” .ThisworkwascomiuctedattheUniversityofCaliforniaunderthgsponsorsh,lpaniiwiththefinancialassistanceoftheNationalAdvisoryCommitteeforAeronautics. .Tineauthorswishtoextendtheirgratitu

21、detoItoMr.H.R.Poeland,whoconstructedtheheatexchanger;toMr.A.G.Guibert,whotranslatedtheGermanarticlebyH.Latzlm;andtoMessrs.C.H.Kilpatrlck,F.E.Maddocks,M.?4.Rubesfn,E.Barron,H.B.Fletcher,G.T.Dibble,andA.P.HuntingtonfortheiraidInobtainirigdata.A greatportionofthedatareportedhereinwasobtainedbytheJunior

22、authorsaspartoftheirfulfillmentoftherequirementsforthedegreeofmasterof -scienoeInmechanicalTh9apparatus1se*ineering.DESCRIPTIONOFAPPARATUSessentiallya doublysteea+jacketedtubethroughwhichairiowsandisheated.Me saturatedstathusitiscalledthe“no-load”heatlossendwasusedasa correctiontothe“load;values.The

23、n-loadvaluewasabout10percentoftheloadvaluesThe 19 glass condensate collector tubes were Installedbetweenadouble-glass-partition chsmber. This actedasb insulatingJackettoreducetheno-loadheatlosses.outsideoftheglasspanelsa sheetofpaperruledtotenthsof inchwasplacedinordertomeasurethswaterlevelinthetube

24、s.Thedownstreamendofthetestpipe was connectedWItha M-inch-longrubbertubebywayofa gatevalvetoa 3-inchpipeleadingtoa calibratedorificesectdonandthencetotheintakeofa centrifugalblowerwhichexhaustedtheairtotheatnnsphere.Therateofairflowwaeregulatedbytheblowerspeedandbyans ofthegatevalve.Entering+irtempe

25、ratureswereobtainedbymesnsoftwolaboratorythermometersanda thernmcouple,allsuspendedintheairneartheentrance.Thesurfacetemperaturesof the testsectionwereobtainedbymeansofthermocouplesWbeddedinslotsmadeinthepipe.Thedownstreamoutlet-airtemperaturewasobtainedbymwansofa thermocoupleinthe3fnchpipeandwasarr

26、angedfortraversingthecrosssectionofthestream.Theequipmentwasoperatedwiththevariousentranceappsratuattachedtotheupstreamendof thetestsection;forinstance,abellmouthnozzlewasusedtoobtaina conditionofuniformvelocitydistributionandwirescreenswereusedtoobtaingreaterturbulenceintheairstream. Schematicdiagr

27、smsofalltheentranceeffectsareshowninfigure1. Asshowninfigure5, the shortandlongcalmingsections,aswellasthetwoelbows,aremadeofpipeshatingthessmeinsidedimter (1.78s in. ) es the test pipe. The shortcalmingsectionis5 inches long ( 1A = 2.8) end thelongcalmingsectionis20incheslong(Z% =11.2).Thelegsofbot

28、hthe45 and90elbows=e about2 incheslongmeasuredalongthecentrelaxis.Thediametersofthetwoorificesexe1.04and1.41inches,respectively.Theroundbendshaveslightlysmallerimidedimters thauthetestpipe,butthedownstreamendsarechamferedtagivea snmo+fitwiththetastpipe.Provided by IHSNot for ResaleNo reproduction or

29、 networking permitted without license from IHS-,-,-6 .NACATNNo.1451 DESORIXTIONOFI!ESTIN3PROCEDURX .=Whenf;teematatnnspheric pressurewasadmittedtotheapparatusata lowflowrate(soadJustedthata strongwispofsteamcontinuouslydischargedfromthelasttestsectfontotheatmosphere),thesectionswerepurgedofairbythep

30、assageofthesteamthroughthemandbythesteamflowthroughtheglasstubewhenthecorksatthebottomswereremoved.kL8 soonasequilibriumtemperatureswereestablishedthroughout,alltemperCLtZUWSandallno-loadcondensatelevelsintheglasstubeswererecordedat,lwhereasthe f at A of 15.40Cxand 16.50 am disregarded because of th

31、e influence, ontheflowcondition,oftherubberhoeeconnecterprotrudingintothebackendofthetestpipe.Asidefromthesepoints,theexperimentaldataindicatea regularvarationof fCx dJngthOpipelengthforthedifferententrcecondftionsc . .CALCULATIONSEromthedatacollected,thefollowingitemswerecalculated:thehatgainedbyth

32、eairslxeamateachsection,thetemperatureriseoftheairstream,andfinallythelocalunitthermalconductanceateachsection.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATNNo.1451Forsczneoftheentrancecotitions(a,b,g,h,i,#,k,andZinfig.theaven%geunitthermalco

33、nduotance asa funotionofpipelengthwasalsocalculated.Theheatgainedbytheairstresmateachsectionisequaltotheproductoftheheatofvaporizationofwaterandthedifferencebetween71),heloadrateofcondensationandthen-loadrateofcondensation.TheneloadrateofcondensationvariedwiththeheightofthecondensatelevelintheKlaast

34、ubes.Itwasa linearvariation,however,andsothearithmeticavrageno-loadvaluesbetweentheinitilevellevelofthecondensateswereused.Thustheheattransferd thefinaltotheairS-treelnwhereload,levelsfromeachsectionwasqa ( )=Ah Rav-R:avVapIh5anglebend,90anglebend,90eaglebendwitha lorlhl -In fie 30, the fotiowkg ent

35、renceccnditicmsarecctheunitthezmalcozductcnceofincreasingthe .degreecftmbulencebyadditionofscreensianoible.4. Or.lyormidealsystemofturbulentflowincirculartubeshasbeensuccessfullyanalyzed.Forcase1,inwhichthevelooity andtemperaturedistributtonsareuniformattheentrante.thenointunltthe )=0.625ReO”(“-o.15

36、10x -2.844x_o 40- +o.o#e”25%rc =0.0384 “x o. -o.1510x -2.8Uxo.873ebO*25$.0,- q )inP(A2)where B“ isthetem inpmentheseatieqpation(A2).themlal Comblct-moe foav could beobtatidIntenuaof 1,the tube length measumd frm theleading edge. :%IProvided by IHSNot for ResaleNo reproduction or networking permitted

37、 without license from IHS-,-,-18( )(a) For Y 0.686 or ( ) $ =0.625Re0”25%.-.“f 1 z.%N=- 1.IJ fc (0.686)A”275$+ fc - cav w“%(cm1+ 0.144Ref )0.25= (A4) . -2Iversen(reference1)wassuccessfulinsimpliingtheccmrplexequationsgivenbyLatzko,andpresentedthefoXlawing.equation8forthevariationofthepointunitthenne

38、.1oonduota.nceintheentrancesect.ion withinitiallyunifomnvelooityandtemperaturedistributions.(a) For Re/4% ,.,r -_,. -.-.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATNNo.1451Fortheaverageunitthermalconductancefora length1,hegave:(a) For Re 1/

39、4%f =fc( )1+ 0.128Re0”25Cav a z(A7)(A8)Themthod ofMartinellf (reference 3) presents an approximatemethodof solving case I by postulating that the fluid flow along the.entrance section is similsr to that along a flat plate until the boundarylayer builds up to the radius of the pipe. Thushe gives f r

40、air flowing?turbulently in the entrance section the followlng equations for the pointtit thermal conductance.(a) For 4.4%4 T0.3G0.8f = 5.4(10)Cx m%(A9)(A1O)ilBeinningwithpartXVIIIofthisseries,theexponentof T(and TfYandtheconstsntsintheseequationshavebeenslmpllfied.Provided by IHSNot for ResaleNo rep

41、roduction or networking permitted without license from IHS-,-,-.,.-20 .- NAOATNNO. 1451 .-Andfortheaverageunitthermalconductanceasa functIonoflength, -(a) For.-2 (-5)tlmfollowlng may be used%fc =f( )1 + O 067lle0”25av %“ 1Case IIIFor case III Latzko offers the following apprcmhmte graphl cal mthcd.

42、First the point uuittherml conductance at the particular Re of the problemiscalculatdasIfItwwreforcaseI,andthenthecalculationisrepeatedasifitwereforcaHeII.Bothcurmsforthepintunitthermalconductanceeralaidoutatadiaticeof x apart,equaltothedistancebetweenthebeginniwof the calming eectlon aud the heatin

43、g 8ection, uifor case II. “enmJ.op3” of * two cU,tveS WOWthe fc calculated for case I ahead Of thatxbe the solutionfortheirstapproximation.n)PProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-22Forexample,IfCx II.I X()r-%fcx . caseI- case case111.,1- t

44、-x)+46J%tube-wallbmperature,Fairtemperature,Fmfxed-mmnairtemperatureatmixedsnairtemperatureat-section,%weightrateoftluid,lbentrance,F QanyparticularU stance from entranceof tube, ftdistance into fluid streammeasuredfromthe tubewall, f t .specfftcweightofflufd,lb/cuftthfcknessof boundaryhyer, ftabsol

45、ute viscosityoffluid,(lb)(see)/sqftkinematicviscosityoffluid,sqftsecdi?mmsfonlessratioofdistanceg()massdensityoffluid,(lb)(sec2)ft4functiondefinedinappendixA()fc%Nusseltnumber T-.-_.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-ItAcA NO. 1451Re.Pr

46、Prendtlnuniber(3600:0,)25Reynoldenumber( H %T = 3600pg)a71a15Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26.- .NACATNNo.1451REFERENCES1. Iversen,H.W.: VariationofthePointUnttThermlConductanceonEntrancetoTubesfora FluidFlowingTurbulently.M.S. Thes

47、is,univ. of Cslir.,1943.2. Latzka,H.: HeatTransrinaNACATM No. 1068, 1944.3* Boelter,L.M.K.,Dennlson,H.TurbulentLiquidorGasStream.G.,Guibert,A.G.,endMorrin,E.H.:An Inve8tigation,ofAircrafHeaters.formmceof a Fluted-TypExhaustGasARR,lfarch194.3.4. Boelter,L. M. K.,Martinelli,R. C.,theAnalogybetweenHeat

48、l%ansferandx - edPer-andAirHeatExchanger.NACAandJonassen,F.: RemarksonMomentu.mTramfer. Trans.A.S.M.E., io1. 63, JUIY 1941, pp.447-455.3* Prandtl,L.: TheMechanicsofViscousFluids.Vol.IIIofAero-dynamicTheory,div.G,W. F.Durand,cd.,JuliusSpringer(Berlin),1935.5. McAdams,WilliamH.: HeatTransmission.Secondcd.,McGraw+?illBookCo.,Inc.,1942,PP.168, 171.-.-.-!.-.a71 -.Provid

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1