ImageVerifierCode 换一换
格式:PDF , 页数:109 ,大小:1.81MB ,
资源ID:836235      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836235.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-1709-1948 Investigation of the effects of a nacelle on the aerodynamic characteristics of a swept wing and the effects of sweep on a wing alone《机舱对掠翼空气动力特性的影响和掠角对机翼的影响.pdf)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-1709-1948 Investigation of the effects of a nacelle on the aerodynamic characteristics of a swept wing and the effects of sweep on a wing alone《机舱对掠翼空气动力特性的影响和掠角对机翼的影响.pdf

1、L1.i,d1Imobx-lIIIbIJAIIII1II1I,1L,i NATIONALADVISORYCOMMITTEEFOR AERONAUTICSTECHNICALNOTENo. 1709INVESTIGATION OF THE EFFECTS OF A NACELLE ON THEAERODYNAMIC CHARACTERISTICS OF A SWEPT WINGJUNDTHE EFFECTS OF SWEEP ON A WING ALONEBy Gerald Hieser and Charles F. WhitcombLangley Aeronautical LaboratoryL

2、angley Field, Va.=U!I!WashingtonOctober 1948. . -. . , . - -. - -s -. . . . . . . . . . . . . . . . . . . . . . . . . -/- .-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECH LIBRARY KAFB, NMIlumnnllllulllllu014i9bqNATIONALADVISORYCOMMITIEEFORAEROI

3、WJTICSTECBNICALITOI!ENo. 1709INVESTIGATIONOF TREEEEECTSOF A NACELLEON THEAERODYNAMICSTICS OF A SWEFJ!WINGANDTHEEEFECIBOF SWEEPON AWING ALONEBy GeraldHieserendCharlesF.WhitcombAn investigationwas conductedto detemine the effectsof a nacelleon theaerodynamiccharacteristicsof a sweptwiqgep to 0.61thedr

4、agincrementduetothenacellewas lowerforthe sweptconfigurationsthanfortheunsweptconfiguratims.The additionof thenacelleto thewingreducedthe longitudinalstabilityat all sweepangles. Forboththewing aloneandthewing-nacellecofiinatim,a markedincreasein longitudinalstabilityresultedfrompositivesweep,wherea

5、sonlya smallinoreasewasrealizedfornegativesweep(-45) .When thewingwas sweptback or sweptforwazdto en angleof 45,high pressurepeaksandadversepressuregradientsoccurredneartheleadingedgeof thewingat theacutejunctionof thewingendnacelle.- . .- . . . - . -. - - .-,.Provided by IHSNot for ResaleNo reprodu

6、ction or networking permitted without license from IHS-,-,-2#NACA No. 1709IlvTRoDml?IoN.Recentinvestigationshavebeenconductedto evaluatetheeffectsof ue sweepas a meansofreduqingand d.elangtheadverseeffectsdueto compressibiLL*on theaerodynamiccharacteristicsof awing.Oneof theproblemswhicharisesiswhet

7、hermy unfavorableeffectsoccurwhichtendtolessenor canceltheeffectsof sweepwhena nacelleis added.to a swept*. A studyof theeffectsofwing-nacell.einterferenceat low speedson a sweptwingwithvariousnacelleconfigurationsis gtvenjnreference1.Thepurposeof thepresentinvestigationis to determinetheeffectsofa

8、nacelleon theaerodynamiccharacteristicsof a swept* (overa spetirq) and to comparetheseeffectswiththeresultsobtainedfromtheunsweptwingand.nacelle. In tion, weeffectsof sweep.ontheaerodynamiccharacteristicsofa wingaloneere/presented.AnNACA 6-5wing in combinationwitha modifiedW lU bo was testeriin tiee

9、y 16-foothim-speed tuunelatsweepaLes of Oo,45,and -45fora rangeofMachnumberfrom0.13to 0.61. The*alone was testedat sweepanglesof 00,150,30,45, ti -k5for arange ofMachnumberfromO.13toO.70.SYMBOLSAab/2bt/2c.GCrCtcACA.aspectratio (b2/S)speedof soundin air,feetper secondsemispsnofmodel,feetlengthof quar

10、ter-chordlinebetweenrootand tipchords,feet(fig.1)sectionchordofwingparalJ.elto air stream,feetmeanaerodynamicchordmeasuredparaUel to a tipchordof 2.22feet-andhadnogeometiictwistor dihedral.Theairfoilsectionswereperpendicularto thequarter-chordlineof theunsweptwing. Thewingwasmountedasa reflection-pl

11、anemodel,and sweepwas obtained.by pivotingthewingaboutthe-percent stationof therootchord. A clifferentwingtipwas usedfor eachangleof sweepso thatthetipwasparallelto thetunnelair stream. The spanwiselocationsof theeit stationsofpressureorificeswithreferenceto thetntersect+onof thequerter-. chordlinea

12、nd thetunnelwaU are givenin table1. The chordwiselocationsarealsoincluded.Photographsof thewtigmOtea in thetunnelat eachangleof sweepare shownas figm?e2. TableII“givesthedimensionsof thewingat eachane of sweep.ThenacelLeusedwasa modifiedNACAU-l solid.body (nointernalflow)andwasmountedat themidsamisp

13、anso thatitslongitudinalaxiscorrespotiedwiththewingchordline,andthe45-percent-chordstation.-. . . - . - . . “- .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA NO. 17 5.of thenacellecorrespondedwiththex-percent-chordstationof thewing. Thsnacelle

14、coordinatesare givenin tableIII. Themaxhiumdiameterof thenacellewas 1.18feetml thelengthwas 7.08feet.Pressureorificeswerelocatedon thenacelleat stations3/16inchfromthew- surfaceat theinboardand outboardjuncturesof thew5ngemdnacelle. Orificeswerealsolocated.on thenacellesurfaceintheverticalandhorizon

15、talplanesthroughthelontmU.nalaxisofsymmetry.Photographsof thewingandnacellemountedin thetunnelat sweephowever,no attemptWasmatito correctthedataforpossibleeffectsof leakageat thetunnelwdl. .RESULTSh Dat largersnes, theveloci-componentconceptaentlyhowever,Unwhereas,at k50 sweepforward.the maxiunmlift

16、 coefficientobtainedwas“O.97. At thesesweptconfigurations,forboththewingaloneandthewing-nacelJecwibination,theprogressof stallwas graduel,amdno sharplossof liftwas encounteredup toabout32ane ofattaok.Drag.- Thevariationof dragcoefficientwithliftcoefficientforthe*alone at sweepanes of 0,15,30,45,and.

17、-45ispresent9dinfigure17 forMachnumbersfrom0.20up to themximum tunnelM znmiber(approx.0.70). In general,therangeof liftcoefficientsinwhichthedragcoefficientsremainedlowerfor thesweptwingthanfor theunsweptwingincreasedwithincreasinglbchnmiber. At Mft coefficientsbelowabout0.23,thedragcoefficientof th

18、e450sweptforwardwingwaslowerthanfor the45sweptbackwing. At higherliftcoefficients,thedragfor 45Sweepforwsrdincreasedmorerapidlywithinc?x3as5nglift than for 45 sweepback.Thisdifferenceof increasein*g withliftis amociatedwiththelowerlift-curveslopeof thewingatsweepforward. .Thedragcoefficientwas sligh

19、tlyhigherfor the15 sweptwingthanfor theunswept at allvaluesof llftcoefficientandMachnumber. Apparently,thebenefitsdueto sweepwhichtendedtoreducethedrag(for A = 15)weresmallerat finitevaluesofliftcoefficitithentheadverseeffectsdueto the smalleraspectratioandlowerlift-curveslope. The causeof thedragdi

20、fferenceat andnesr zero liftisnotappsment,but theclifferpnceisrefitlvelyemslllinmagnitude.lh figure 18 thevariationof dragcoefficientwith-lfftcoefficientispresentedfor thewingnacellecmibinationat sweep30, 45, aua -450. The pitching-momentdatafor thewing-nacelleconikhationme showninfigure23 for sweep

21、anglesof Oo,450,and -45amiMti numbersof 0.20,0.40,arUI0.61. me effectofnacee -sweepon theslopeof thepitching-momentcurveis presentedinfigure24at a Machnumberof 0.61. The effectof thenacellewas to reducethestabilityslightlyat allanglesof sweep. Sweepingthewingin thepositivetiection restitd in“amerked

22、.ticreaseof stability-whichwascausedby theoutwardshiftin thecenterof loadaswas shuwninfigure13. At -45sweepthestabiliwas increaseddueto theinwardshiftof thecenterof lad.PressureDistributionsFressuredistributionsof thewing-nacelleinboardandoutlmamljunctures=8 presentedinfigures25 to 27 for sweepan.es

23、of 0,45, and -45 at liftcoefficientsof 0.20and0.40andhch nuiberofapproximately0.60. No adversepressurepeakswere presenton theunsweptcotiiguration.At A = 450, highnegativepressurepeaksandadversepressuregradientsexistedn- theleadingedgeat thetibOaJuncture,whereasat thenegativesweeppositionthesameflowc

24、heracteisticsresultedat theOutbOa junctureneartheleadingedgeof thewing. The criticalMachnumberwas surpassedfor thesweptbackpositionat liftcoefficientsof boti0.20end0.40andfor thesweptforwerdpositionat a liftcoefficientof 0.40. Despitethesesupercriticalpressurepeaks,thenacelledragfor thesweptconl?igu

25、rationsbasedonnacellefrentalareawaslowerthanfor theunsweptconfigurationas is showninfigure20. Apparentlytheprpssurepeakscausedbywing-nacelleinterferenceweretoolocalizedin thel thenatureofwhichwouldrequirea detailedstudy. Thedatain,reference1 indicatethata modificationin thecontourof thenacelleortion

26、whichprotrudesaheatiof the-wingleadingedgetoconfom withtheflowpattefnimmediatelydhfflaof a sweptwingiseffectiveinreduc thepressure. . . . . . - -,pea$sat the juncture./1. - .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACATNNO. 1709Figures28 t

27、o 30 showpressuredistributionsonetheupperlowersurfacesin theverticalplaneof spnet of thenacelleforsweepanglesof 0,45,and -45at a Machnumberof about0.60andliftcoefficientsof 0.20andO. For thesweptconfigurationsthepressuregradientsbehindthemaxhmm negativepressuresweremoregradualthanfortheUnsweytConfig

28、uration.In addition,theeffectof thesweepwas to movethecenterofpressureforwardon thenacelle.No extremepressureyeaksoccurr overthisportionof thenacelJ.eforamy of thetestconditions.Pressurecontoursfor theupperand.lowersurfacesof the*alonearepresentedinfigures31 to 42. As would be expected.fromthetieory

29、of sweey,thenegativepressuresonboththeupperandlowersurfaceswerereducedas thesweepwas tireased. Figures31 to 33shuwtheeffectsof sweepon thelocationof thepeakpressuresforaliftcoefficientof 0.20anda Machnumberof 0.61. At zerosweep, thepeakpressureson theuppersurfaceoccurredat aboutthe35-yercent-chordst

30、ationovertheentirespanof thewing. For thewingat 450,thepeakstowardthecard portionof thewingremainedat aboutthe35-percent-chofistation,whereasmum thetiptheyshiftedforwardtotheleadingedge. At A = -450 tie ao the span Ocmea atthe leading edge except for thosenearthetipwhichw6reshiftedslightlyrearward.

31、The effectsof sweepon thespwise dlstmibutionofpeakpressuresarealsoevidentinfigures31 to 33. ThepeaksshiftedOu*a forpdsitivesweepand -a fornegativesweep.Thiseffectis consistentwiththespsmwise-loadingcurvespresentedinfigure13. It isapparentfromfigures32 and33 thatthespsmwisepressuregradiemtat sweepfor

32、wsrdwas greaterthemat sweepback;adsincethepeakpressuresoccurredfartherfOa on thewingat sweep-fOa, thegratienteffecteda spanwiseflowovera greaterportionof thew3ng.Figures34 W 35 presentpressurecontourson thewingat a liftcoefficientof 0.20anda -ch numberof 0.61for sweepanes of 150and 300,respectively.

33、Thesefiguresshowat thepeakpressuresontheper surfacewereshiftedprogressivelyoutboerdas thesweepanewas increased.lhaddition,increasingthesweepreduced,themagnitudeof thepressureson boththeupperandlowersurfaces.A comparisonoffigures31 and34 shuwsthatthespanwisepressuregradientalongthelrailingedgefor the

34、0 and15 sweeppositionswereof approximatelythesamemagnitudebut oppositein slope. sfactindicatesthatthespenwiseflowin theboundaryUyer shouldbeof aboutthe samemagnitude.Pressurecontoursfor thewingat A = 0, 45, -45 foraliftcoefficientof 0.20andaMach nuniberof 0.20areresentedinfigures36 to 38. A comparis

35、onof thesepressureswiththoseoffigures31 to 33 indicatesthata changeinMachnuuiberfrom0.20to0.61haano appreciableeffecton thepressurecontours. .-. ._=. .-.- _ - -:“;.-.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MACATN No. 1709 11.The contoursofsw

36、eepbaokfora llftfigures39 end 40 are shownwiththewingat,45coefficientof zeroandch numbersof 0.20= 0.61,respeotive Theuppersurfacepeaksacrossthespan“occurredbetweenthe 45- and x-percent-chordstationsat bothMachnumbers. Increasingtheliftcoefficientto 0.40shiftedthepeakpressureson theuppersurfaceto the

37、leadingedgeof thewing(figs.41 and42).Figures43 to Z shuwthepressurecontoursfor thewing-nacelleoonibination.Thesedataarepresentedfor thesameliftcoefficients,Machnwibers,amd sweepanes as are givenfor thewingaloneInfigures31 to 33ad 36 to 42. AS was previous- showninfigures26M 27, high localized pressu

38、re peaksexistedat theleadingedgesofthewing-nacellehiboardncture of thesweptbaok* end thewing-nacelleoutboardjunotureof theptfa wing. In general,thelinesof constantpressureonboththeuer andlowersurfacesatthese$mOturesweresoalteredbecauseof thewing-nacelleinter-ferencethattheybecemenormalto theair stre

39、am. Thisfaotindioatesthatin thevicinityof the ,Wnoturewherethecriticalwessures wereexceeded,theresulthg shock-alsooccurredin a ectiotheairstream;therefore,thelossthroughtheshockwaswouldhavebeeneqerienoed.had theshockbeenobliquetofluw.Thepressurecontourson the 45 sweptbackwingwithnmmal togreaterthan&

40、e anoomingvertical platei.mdbaj fw a liftcoefficientof 0.40d a Maohnumberof 0.20,arepresented.infigure53. ApparentlytheplatesweresomewhateffectiveInreduoingtieextremelocalizedessure peaksat theleadingedgenesrthetip,but theydidnotalterthepressurepatternon thetraiportionof *e wing.VisualObservationofF

41、lowCharacteristicsTheflowpatternsin theboundaryar on thewingaloneandthewing-naceld.econibtionfor sweepsnglesof 0,450,and -45atvariousanglesof attaokandMachnumbersarepresentedh figures54-to 57.Thesep&tternewereinterpretedfromtuftstudiesof theflowoverthemodel. Withthewingat A=Oo and A=45 qnd.angles of

42、attaokfora liftcoefficientof 0.40,theadditionof thenacelleoaueedaslightdeviationof theflowin theimediat6vicini of thenacelle* (fi& a71 * 55)=Fiwe 56 showsthat,at tiesamelut coef-ficient,theadditionof thenacelleto theswept!?ozwardwingresultedinno detectabledeviationin theflow. n addition,figures55and

43、 56indioatethatneitherthedistortionof theairstrea dueto thevelocitycomponents.whiohresultfrcmsweepnor thespanwl.seflownearthe*ailingedgewas alteredby thepresenoeof thenacelle.a71-. .-. . - . -. ._. _.,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

44、12 NACA NO. 1709.Comparisonsof theflowpatternsoverthewingand thewing:nacelleccmMnations=8 presentedin figure57 at geometricanesofattackof 180,22,and200for sweepan.esof 0,45,and -45,respectively.At A = 0 theadditionof thenacelleappreciably “ticreasedthesreaoverwhichunsteadyflowoccurred.,whichindicate

45、sthata substantieJ.lossof liftresulted.Thepatternsfor thesweptconfigurationsshowthatthepresenceof the.paceld.ehadverylittleM?luence on thefluwcharacteristicsoverthewinganddidnotappreciablyincreasetieareaof unsteadyfluw. Theresultsshownbythesepatternsserveto suemmt thelifttitsoffigure16.Theflowpatter

46、noverthewing.at450sweepbackandat a geometricae ofattackof 6withtheverticalplatesmountedon theuppersurfaceispresentedinfigure58. Thispatte?.mshowsthattieplateswererelativelyineffectiveinreducingtheboundary-lapr samwlseflowoverthe portionof thewing. Visualobservationsoftuftsnunzntedon thesurfacesof th

47、eplatesindicatedthattheairflowedupwardon theinboardsurfacesof theplates&ad&mmward on thesurfacesfacingoutb-.Figure59 presentstheflowpatternsoverthewingat A = 45 wiihthestraightand curvedvanesinstalled.Thed.lstortionof flowam tosweepbackwasreducedimetiately-outboardof thestraightvane,whereastiecurved

48、vanehadno noticeableinfluenceon thepatternof flow.CONCIIOlW /.Therekultiof an investigationto detezninetheeffects.ofanacelleon theaarodpamiccharacteristicsof a sweptwingend theresultsof theeffectsof sweepon theaerodynamiccharacteristicsof thewingaloneledto thefolwtng conclusions:1. The eqerimentalvariationofwinglift-curveslopewithsweepane is in goodagreementwiththetheoreticalvariationup to 30sweep. At greatersweeps,however,theveloci-componentconceptapparentlyunderestimatestheeffec

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1