ImageVerifierCode 换一换
格式:PDF , 页数:52 ,大小:651.03KB ,
资源ID:836252      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836252.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-2114-1950 Theoretical lift and damping in roll of thin wings with arbitrary sweep and taper at supersonic speeds supersonic leading and trailing edges《在超音速下 带有任意掠角和锥形薄.pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-2114-1950 Theoretical lift and damping in roll of thin wings with arbitrary sweep and taper at supersonic speeds supersonic leading and trailing edges《在超音速下 带有任意掠角和锥形薄.pdf

1、!ti r_i_ and ifWhen the Mach line is behind the leading edge_ that is,4kmA 2_ +i 2_m - I J4kmIf A (l + )(mFor tapered wings:CL_ =i): %.%B_m 2 - i 2A(k 2 - i)k_m 2 - 1 cos-1 -_/(_, - 1)(kin + 1)cos_ 1 4 2) - J2)(A4)(AS)+cos-1 l_+m IF4km - A(k - 1)-12j m + i I-4A (k - l) _lk(_ + l(A6)Provided by IHSNo

2、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-18 NACA TN 2114For unswept leading edges or for unswept trailing edgesFor untapered wings k = k = I:= 4 m2(_m2 2) cos-i 1CL_BA_m 2 - i_ (m 2 - i) m- I2(m- i) +m ,2+k = _ or O:(A7)(A8)Fo_ulas for CZpIf the Mach line is c

3、oincident with the leading edge, that is,B cot A = I_ there result:For tapered wings:CZp =J3k3(1 - k) 3 + 2j2k3(1 - k)2(9k - 8_(1 - k) 32Jk3(l - k)(15k 2 - 32k + 12) + 12k4(k 2 + 4)_- +(1 k)34_3(i - k)(23k 2 + lOk + 2) + 4kj2(41k 2 - 5k - i)_35+, 3_I _i-k) + 4k4_K-12k2J(29k - i) + 240kSjI_ J(i + k)

4、+35 1 3J2(I + k)3Ji(continued on next page)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2114 198kS(k2+ 4)j3(l _ k2)3_ _ i3(1 - k2) 3 -_I i J(l - k) + 2_k - cs-i 2k -512 X( )3j2k(41k 3 + 63k 2 +llk ii) - Jk(13k 2 + 29k - 41 48k(k 1)2+_J2(3k2

5、 + 3k + 20) + 4Jk(k2 - 21k - 2) + 4k2k(23k + 3)_x64(k + 1)2 _(A9)For unswept leading edges or_for unswept trailing edges; k = _ or O:CZp - 3_B(I + k) - I05j2 Jj3 2 + 4 -3_BJ3(I + k)J64 _ 2 - _ + _ + k cos -I j + +2 pI%312 +4 $12 I_ (_o)Provided by IHSNot for ResaleNo reproduction or networking permi

6、tted without license from IHS-,-,-20 NACA TN 2114For untapered wings_ _ = k = i:16 8CZp - _BA 3 3-_ + (A + I)2(13A 2 - 22A + 13) cos-i A - i ,+768 A + i/37A 3 41A 2 123A 3_7_ (All)2-_ 1920+_7-Y_-and ifWhen the Mach line is behind the leading edge 3 that is, B cot A i,4kmA (i + X)(m - i):For tapered

7、wings: _ ,l_-128m4k3_k 2 - m2(3k2 + i)_c_p = NI3_j3(I+ _)(m,2 _ 1)3/2(I _ ke)3128k3m4(1+ k2 2m,2k2)3_J3(I + k)(l+k2)2(m2 - 1)(k2m 2 - 1)128kP_4-_4+_2k2(k2+ 3_ -I-l3_J3(i + X)(I - k2)3(m2k 2 - 1)3/2 cos km-Y -k)4_4k% 9 12k3m, 4 k2m,3(_17 k2km2(-Sk 3 - 48k 2 + 3k + 2) - m(lOk 3 + 45k 2 + 12k + 5) -k2m

8、3(-3k 2 + 14k + 5) + km2(-3k 3 - 8k2 + k - 6) - m(6k 3 + 7k2 +8k + 3) - (3k 2 + 2k + 3)_ + 32k2m2j2(l - k)3_12k3m 4 -9k2m3(3 + k) + 3km2(k 2 - 7k - 6) + 3m(2k 2 - 5k - 1) -3(_-_)_+ 2_6k3_,3j(_ _)2_2=,3(_ k)+ _,2(2 -k -k2)+k2m ,3(_9k2 _ lOk + 35) + km2(3k 3 _ 32k 2 _ 5k + 18) + m(6k 3 -37k 2 + 4k + 3

9、) + (3k 2 - 14k +3_96J3(i + k)k(1 - k)3(m 2 1)(km+ i)3k(_+ 1)(=-(AI4Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-24 NACA TN 2114For unswept leading edges or for unswept trailing edges; k = _ or O:-Z I3 + k2_k(Z _ k)2(Sk _ 3) + 6J(1 - k)(k2 _ 4k +c

10、b : B(z- _)3(z+ _)41+ _(-3_2+8_-6)j l .-_I (A_IujFor k = O:128k3m ,4 _ I + k2 - 2k2m 2= ik2-Z _CZP 3_BA;3(-T- k2)2 _j2 l i) i)m2(3k 2 +l) - 4k2 1(i - k2)(m 2 - l)3/2 cs-i m-+k4m2(k 2 + 3) - 4k2(1 - k2)(k2m 2 - l) 3/2(_6)For untapered wings; k = k = i:= -16 4(Pm4 - 4m 3 - 2m 2 + 9m) + 8A3m(m - 1)2(m

11、2 - i) -CZp _A,3B12A,2m,3(m , _ 1)2 + 4Am3(m - 1)2 _ ,192(m - 1)2(m 2 - 1)_m,2 _ 1m4(-3m 4 + lOre2 + 8) m4(-m6 + 4m4 - 8m2) cos -I _I_144(m 2 - 1)3 + 48(m 2 - 1)_ 2 - 1 m .j(AI7)+Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2114 25REFERENCE

12、Si. Lagerstrom, P. A., Wall, D., and Graham, M. E.: Formulas inThree-Dimensional Wing Theory. Rep. No. SM-II901; DouglasAircraft Co., Inc., July 8, 1946.2. Lagerstrom, P. A._ and Graham,Martha E.: SomeAerodynamic Formulasin Linearized Supersonic Theory for Dampingin Roll and Effect ofTwist for Trape

13、zoidal Wings. Rep. No. SM-13200,Douglas AircraftCo., Inc., March 12_ 1948.3. Jones, Arthur L., and Alksne, Alberta: The DampingDue to Roll ofTriangular; Trapezoidal, and Related Plan Forms in SupersonicFlow. NACATN 1548, 1948.4. Cohen; Doris: The Theoretical Lift of Flat Swept-BackWings atSupersonic

14、 Speeds. NACATN1555, 1948.5. Harmon, Sidney M.: Stability Derivatives at Supersonic Speedsof ThinRectangular Wings with Diagonals ahead of Tip MachLines. NACARep. 925, 1949.6. Malvestuto, Frank S., Jr., and Margolis, Kenneth: TheoreticalStability Derivatives of Thin SweptbackWings Tapered to a Point

15、with Sweptbackor Sweptforward Trailing Edges for a Limited Rangeof Supersonic Speeds. NACATN 1761_ 1949.7. Malvestuto, Frank S., Jr._ Margolis, Kenneth, and Ribner, Herbert S.:Theoretical Lift and Dampingin Roll of Thin SweptbackWings ofArbitrary Taper and Sweepat Supersonic Speeds. Subsonic Leading

16、Edges and Supersonic Trailing Edges. NACATN1860, 1949.8. Harmon_Sidney M.: Theoretical Relations between the StabilityDerivatives of a Wing in Direct and in Reverse Supersonic Flow.NACATN 1943, 1949.9. Brown, Clinton E.: The Reversibility Theoremfor Thin Airfoils inSubsonic and Supersonic Flow. NACA

17、TN 19443 1949.i0. Hayes, Wallace D.: Reversed Flow Theoremsin Supersonic Aerodynamics.Rep. No. AL-755, North American Aviation, Inc., Aug. 20, 1948.ii. Glauert, H.: A Non-Dimensional Form of the Stability Equations ofan Aeroplane. R. BA 4B cotA (See fig. 1.)7cot A _- i; IB cot ATE = (i + k)(l + B co

18、t A) dMach llne_Y2 _3,_ ./“4 t /cjs“ $/XFormula for _ contributed byv_(_ - _-) YaRegionseesketch)C B2m - i-i x - B2myy) cosB(mx - y) r_ + (rex+ y) cos-IYa) cos -I mXa + Ya(2Bm + i)mxa - Ya + 2-mya(x a + BYa)(Bm + i)f-Ya)-VCL mx - cos -I mXa + Ya(2Rr“ + i) COS- 1 -rexa + Bem2y a + h(B2m 2 - i_k.-7_y-

19、_ “ _m(m_-y_)cs-I_=_.B%2y_.+h(B2_+l) _ 1(mx,_+ 2h + Ya) + 2 -_-_(xa + By_)(,_,+ l)Bm(mXa + Ya + 2h) J+ Ya + 2h) cos -I mXa + ya(21_ - I) + 2hmXa + Ya + 2hProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-28 NACA TN 21147“ Ii cv xx1i-!o _-_ ,-4i%itu L_Jal+, , !1+n+u it_+ +: _+8%,+I+v c_+-%n+ii+ _8 _ vv+_“ +i+uiv+,-Ii“+i%v+c4IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1