ImageVerifierCode 换一换
格式:PDF , 页数:48 ,大小:736.51KB ,
资源ID:836255      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836255.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-2175-1950 Effect of an unswept wing on the contribution of unswept-tail configuration to the low-speed static and rolling-stability derivatives of a midwing airplane m.pdf)为本站会员(刘芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-2175-1950 Effect of an unswept wing on the contribution of unswept-tail configuration to the low-speed static and rolling-stability derivatives of a midwing airplane m.pdf

1、cm ( -)FOR AERONAUTICS L_TECHNICAL NOTE 2175EFFECT OF AN UNSWEPT WING ON THE CONTRIBUTION OFUNSWEPT-TAIL CONFIGURAllXONS TO THE LOW-SPEEDSTATIC- AND ROLLING-STABILITY DERIVATIVESOF A MIDWING AIRPIJA?N3 MODELBy William Letko and Donald R. 131eyLangley Aeronautical LaboratoryLangley Air Force Base, Va

2、.Washington!I11,I1II1I,i-.1-, . . . . - - - -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECHLIBRARYKAFB,NM. lplllllulllllllQlOll011b5J73NATIONALADVISORYCOMMITTEEFORAERONAIJTMJOTECHNICALNOTE2175EFFECTOF AN UNSWEPTWINGON THEUNSWEPT-TAILCONFIGURATI

3、ONSTOSTATIC-ANDROLLINGSTABILITYOF A MIDWINGAIRPLANECONTRIBUTIONOFTHELOW-SPEEDDERIVATIVESMODEL WilliamLetkoandDonaldR. Riley ,SUMMARY .An investigationhas beenconductedin theLangleystabilitytunnelto detemine the effectof an unsweptwingon the contributionof unswept-tailconfigurationsto thelow-speedsta

4、tic-androUing-stabilityderiva-tivesof a midwingairplanemodel.Theresultsof the investigationshowthat,at anglesof attacksllmostto the angleof maximumlift,thereare onlysmalldifferencesinthetailcontributionsto thestatic-lateral-stabilityderivativesforconfigurationswithwingon andwithwingoff. Forthisrange

5、of anglesof attackthe contributionsof theverticaltailcanbe estimatedfair3yaccuratelyby theavailableprocedures;Theavsilableproceduresgenerallypredictthewing-offvaluesoftherollingderivativ%at lowanglesof attackwithreasonableaccuracy.Alteringtheseequationsto accountfor sidewashcausedby theunsym-metrica

6、lwingload (dueto roll)bringsthe calculatedwing-onvaluesintomuchbetteragreementwiththemeasuredwing-onvalues.Someerrorin theestimatedcontributionof thetsi.1to theyawingmomentcausedby rollresultsfor the low-horizontal-tailconfigurationbecauseof a forwardshiftin the centerof pressureof thevertical.tsilc

7、aused thehorizontaltail. .INTRODUCTIONRecentadvancesin theunderstandingof theprinciplesof high-speedflighthaveledto significantchangesin”thedesignof componentpartsof airplanes.Inmanyinstancesconsiderationis givento coilfigurations. . . . . . . . . . -_ - .- . .-. . -.- . _ .-. .- _.Provided by IHSNo

8、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-r2 NACATN 2175whichsrebeyondthe rangecoveredby”availabledesigninformationregardingstabilitycharacteristics.Theeffectsof changesin wingdesignon stabilitycharacteristicshavebeenextensivelyinvestigated.ti orderto providein

9、formationon theinfluenceof otherpartsof thecompleteairplane,an investigationof a modelhavingvariousinter-changeablepartsis beingconductedin theLangleystabilitytunnel.Reference1 presentstheresultsof an investigationon theeffectofhorizontal-taillocationon the low-speedstaticlateralstabilitycharacteris

10、ticsof a modelhaving45 sweptbackwingandtailsurfaces.As partof thisgeneralinvestigation,the effectof an unsweptwingon the contributionof an unsweptverticaltail.to the staticlateralandroll stabilitycharacmristicshasbeendetermined,andtheresultsarepresentedherein. Theseresultsservethepurposeofcheckingth

11、evalidityof presentmethodsof estimatingthecontributionsof componentpartsof airplaneswhenappliedto representativecurrenthigh-speedairplanedesigns.SYMBOLSThe datapresentedhereinarein theformof standardNACAcoef-ficientsofforcesandmomentswticharereferredto the stabilitysystemof axeswiththe origincoincid

12、ingwiththewingaerodynamiccenter. Thepositivedirectionsof theforces,moments,andangulardisplacementsare shownin figure1. The coefficientsandsymbolsaredefinedas follows:CL . liftcoefficient(L/qSW)Cx longitudinal-forcecoefficient(x/w) -% lateral-forcecoefficient(Y/qSJC2 rolling-momentcoefficient(L/qb)cm

13、 pitching-momentcoefficient“(M/qSCn yawing-momentcoefficient(N/qSWb)L liftx longitudinalforce (-Dragat $= 0)Y lateralfQrce,._. -. - - . . -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2175.r,LIMNq%7bAcF .h-%2a?$DvProllingmomentpitchingmomen

14、tyawingmomentdynamicpressurewingareavertical-tailareawingspanaspectratiowingchordwingmeanaerodynamicchordverticaldistanceaboveor belowtunnelcenterlineperpendiculardistancefromfusel?gecenterpressureof verticaltailtaillength;distance,parallelto fuselagewingmountingpointto centerof pressurelineto cente

15、rofcenterline,from ofverticaltailangleofangleofplane,angleofsidewashattackof wingor fuselagecenterlineattackofverticaltailmeasuredin a horizontalpositivewhenit resultsin a positivelateralforceyawangleat verticaltail;the changein angleof attackof a sectionof verticaltail resultingfromadditionofawingt

16、o fuselageandvertical-tailcombinationoperatinginrollingcondition,positivewhenit resultsin a positivelateralforcefree-streamvelocityrollingangularvelocity. - . - - - - - .- . . - - -. .-7 _ -, . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. - .-.

17、- ._.-rateof changeofhelixangle-.rateof changeoftiphelixanglevertical-tailINACATN 2175 -.angleof attackwithwing-tip usidewashangleatverticaltailwithwing-pbE wing-tiphelixangleCL= lift-curveslopeof wingCL lift-curveslopeof verticaltail (CL of verticaltailbased% on vertical-tailarea) #acy% =$ alfZICnc

18、%=2VaczCz =P *2V.uD. . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 2175APPARATUSANDMODELS!5.Thetestsweremadein the 6-foot-diametertestsectionof theLsngleystabilitytunnel. Thissectionisequippedwitha m6tor-drivenrotorwhicharts a twistto the

19、air streamso thata modelmountedrigidlyin the-tunnelis in a fieldof flowsimilarto thatwhichexistsaboutan airplanein roJ. . . . . . . . . . . . . . .Area,squareinches . . . . . . . . . . . . . . . . . .Span,inches. . . . . . . . . . . . . . . . . . . . . . .Meanaerodynamicchord,inches. . . . . . . . .

20、 . . . . .Taillengthjinches . . . . . . . . . . . . . . . . . . . . g.:. . . “o. . 0. . 0k6A6A00;. . 324. . 36. . 9.19. . 2.0. . 0.6tiA 65A0. . 48.60.0 9.86. . 5.03. . 15.38. . ._. . . . . - . - - - - -. - - . - - .- ._. ._._.-. . . _ .Provided by IHSNot for ResaleNo reproduction or networking permi

21、tted without license from IHS-,-,-6.NACATN 2175Horizontaltail:Aspectratio. . . . . . . . . . .Taperratio . . . . . . . . . . .Qusrter-chordsweepangle,degreesIncidence,degrees . . . . . . .Dihedrslangle,degrees . . . . .Twist,degree s . .Airfoilsection . . . . . . . . .Area,squsreinches . . . . . . .

22、Span,inches. . . . . . . . . .Meanaerodynamicchord,inches. . . . . . . . . . . . . . . 4.0. . . . . . . . . . . . . . 0.6. . . . . . . . . . . . a71 . o. . . . . . . . . . . . . . 0. .0. . . . . . . . . 0. .0. . . . . . . . . . . . . . . . . . . NACA65AOO;a71 . . . . . . . . . . . . . 64.80. . . . .

23、 . . . .* . . 16.10. . . . . . . .0. a71 . 4.11Detailsof thevcbg,fuselage,andtailsurfacesandtherelativeloca-,tionsof thewingandtsilswithrespectto thefuselagearegivenin a71figure2. A photographof oneofthe configurationsmountedin thetunnelis givenas figure3.Thetestconfigurationsanddesignationsusedin i

24、dentifyingthedatain the figuresaregivenin thefoowing table:wing . . . . . . . . . . . . . . .*.Fuselage; : . . . . . . . . . . . . . . . . . . . . .Fuselagewithverticaltail. . . . . . . . . . . . . .Fuselagewithverticaltailandlowhorizontaltail . .Fuselagewithverticaltailandhighhorizontaltail .Wingwi

25、thfuselage. . . . . . . . . . . . . . . . . .Wingwithfuselagesndverticaltail . . . . . . . . .Wingwithfuselage,verticaltail,andlowhorizontaltail . . . . . . . . . . . . . . .Wingwithfuselage,verticaltail,andhighhorizontaltail . . . . . . . . . . . . . .*. * w. . . . F,*. F+V. . F+ V+HL. . F+ V+HH. .

26、 W+F. . W+F+VW+ F+ V+HLW+ F+ V+HH,Fortheteststhemodelwasmountedon a singlestrutsupportatthequarter-chordpointof thewingwhichcoincidedwiththego-percentpointofthefusel-elength(fig.2). Forcesandmomentsby meansof a conventionalsix-componentbalancesystem.TESTS .wereasuredTestsweremadeat a dynamicpressure

27、of 39.8poundsper squarefoot,whichcorrespondsto a Machnumberof about0.166anda Reynoldsnumberof 8.8x 105basedon themsanaerodynamicchordof thewing.Themodelwas testedthroughan angle-of-attackrsngefromabout-h”up to andbeyondthe angleoflift at anglesofyaw of Oo ando-. . _ _ _._ . .-.Provided by IHSNot for

28、 ResaleNo reproduction or networking permitted without license from IHS-,-,-sa71 NACATN 2175 7-. in straightflowandat an angleofyaw of 0 in rollingflow. Forthestraight-flowtestsat 0 angleofyaw,lift,drag,andpitchingmomentsarepresented.Dataobtsinedin straightflowat *SOyaw andin rollingflowat severalva

29、luesof pb/2V wereusedto obtainderivativesoflateralforce,yawingmoment,androllingmomentwithrespectto yawangleandwing-tiphe15xangle. The testvaluesof pb/2Vwere+0.0206,*0.ll, and*O.0616. Alsoforthesevaluesof pb/2V sidewashanglesin theplaneof symmetg behindtheisolatedwingweredeterminedbymeansof a yaw tub

30、e. The sidewashmeasurementsweremadeat O, 3, 6,and 9 inchesverticallyaboveandbelowthetunnelcenterline. Themeasurementsweremadeat twolongitudinalpositions;onewas 1.28 feet(Zv= 0!I27)behindthewing-mountingpoint(correspondingto thelongi-Ttudinalpositionof the centerof pressureoftheverticaltailat zeroang

31、leof attackof themodel)andthe otherwas at abouttwicethat(Zv )distanceor 2.56feet = 0.854. For thepositionl.28feetbehind.thewing-mountingpoin,”measuremhowever, %nisprimarilya functionof thewingcharacteristics. .Somedifferencesin the static-lateral-andin therolling-stabilityderivativeshavebeenobtained

32、forthetwotailconfigurations,wingonandwingoff,which.willbe discussedsubsequentlyin the sectionontailcontribution. ,WingCharacteristicsThe lift,longitudinal-force,andpitching-momentdataof thewingalone(fig.h(a)showno unusualcharacteristics.The experimentallift-curveslopeis 0.0630,whichcompareswell.with

33、thetheoreticalvalueof 0.0642givenin reference3. At lowanglesof attackthe aero-dynamiccenterof thewingis locatedat about21.8percentof themeanaerodynamicchordas comparedwiththetheoreticallocationwhichisgivenin reference3 as 25 percentof thewingmeanaerodynamicchord.The static-stabilityderivativesof the

34、wingareplotted-againstliftcoefficientin figure7 andsrecomparedwithvaluescslculatedthemethodsof reference4.agreementwiththemeasuredThevaluesof thewingcoefficientin figure8 andIn general,the calculationsarein goodvaluesexceptathighliftcoefficients.rollingderivativesareplottedagainstliftare comp=ed wit

35、hcalculatedvalues. The.-. .-. _ ._. _ _ _ _ ._. _ , - . -+. -.,“Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACATN 2175valuesof CnD calculatedby themethodof referenceS agreeverywellwiththemeahowever,therateof increasewithliftcoef-ficientis som

36、ewhatlessthantheempiricslresultfoundin reference,Figure9 of reference5 indicatesthat Cy CL is proportionalto l/AP/for unsweptwings. wFuselageCharacteristicsAlthoughthefuselagecontributessomewhatto mostof the aerody-namicforcesandmoments,themost importanteffectson the aerodynamiccharacteristicsof the

37、 airplanesrecausedby the contributionof thefuselageto the staticlongitudinalanddirectionalstability.Thefuselagecontributesan unstablemomentbothin pitchandyaw. As canbe seenfromfigureh(b),the instabilityh pitchdecreasesastheangleof attackis increased,whereasthe instabilityinyaw,measuredat smsllangles

38、ofyaw,remainspracticallyconstantthroughouttheangle-of-attackrange(fig.(b). The instabilityof thisfuselageisverynearlythe sameas thatofthefuselagereportedon in reference1,withthe exceptionthatthefuselageofreference1 ismore unstablein ,tpitchat highanglesof attack. (Thefuselagessreof the samelength,ar

39、eidenticalsheadof themidpoint,snddifferonlyin the shapeof thetsilcone. Thefuselageof reference1 is symmetricalaboutitsmidpoint.) “ . . _ . -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 217S 1-1. Theblunt-tailconeof thefuselagestabilityathig

40、hpresentfuselageappearsto increasetheanglesof attack.,InterferenceIncrements Whenthewingandfuselageare combinedthe effectsofmutualinterferenceon the contributionof eachto the stabilityderivativesandthe contributionof thesecomponentsto theflowangularityat the ,tailarealsoto be considered.Themutualint

41、erferenceeffects,ordinarily,areratherdifficultto evaluateandareusuallyneglectedexceptwhentestresultsareavailablefQr a modelwhichcloselyresemblestheairplaneunderconsideration.In thisevent,recourse.is madeto a method(analogousto previouswork,suchas reference7,for estimatingthe staticlateral-stabilityd

42、erivativesof a completemodel)whichmakesuse of interferenceincrements.TheseincrementsaredesignatedAl and A2 andtheequationfor estimatingthe deriva-tivefor a completeairplaneis illustratedbelowin termsof CnV,for-le : .Cn$=cwfF+%W+lchf+%v+H+ZcwThe incrementAl is the changein the derivativecaused mutusl

43、interferenceof thewingandfuselageandcanbe obtainedfromtestresultsfollowingequation:forthemodelwithoutthetailin themannerillustratedby theThisincrementwas determinedfor the testconfigurationsandis shownin figures9 snd10 for the static-stabilityand-rolling-stabilityderivatives,respectively.The interfe

44、renceincrement Al of boththestatic-androlling-stabilityderivativesis generallysmallforthepresenttestsexceptat anglesof attacknearthe stall. For a.high-wingor a low=wingconfigurationthisincrementwouldprobablybe some-whatlsrgerevenat smallanglesof attack.Theincrement A2 is directlyconcernedwiththetail

45、contributionandis the changein effectivenessof thetailcausedby additionof thewingto the fuselage- tail-groupconfiguration.The terferenceeffectsof thefuselageon thetailgrouparenot determined.The increment A2.is obtainedfromthetestdataas shown,.for example,by thefollowingequationfor A2Cn:* . - . . .-.

46、 - . - . - -.- - .- - - - - . -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.12,NACATN 2175“%= (%.+,+,+,- %fW+.)- (c%,+.+.- C“If,)Thisincrementis combinedwiththe estimatedACn%+Hto givethetotalestimatedtailcontribution.It shouldbe remembered,howeve

47、r,thattheincrement A2 canbe usedto determinetailcontributionsforan airplaneonlywhenit is obtsinedfromtestsof a modelwhictlcloselyresemblesthe airplaneunderconsideration.TheincremetitsA2 of the staticlateral-stabilityandrolling-stabilityderivativesofthe testconfigurationsareshownin figures11 and12,re

48、spectively.Thesefiguresshowthatthevaluesof the ticrement A.2 of the staticlateral-stabilityderivativesareverynearlyzerofor lowandmoderateanglesof attack,whereastheticrementsof the rolling-stabilityderivativesarerelativelylargeevenat smsllanglesof attack. Sincethe incre-ment A2 dependslargelyon theresultantof the sidewashcauseduns

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1