ImageVerifierCode 换一换
格式:PDF , 页数:27 ,大小:448.99KB ,
资源ID:836283      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836283.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-2764-1952 Accuracy of approximate methods for predicting pressures on pointed nonlifting bodies of revolution in supersonic flow《在超音速流量下 在有尖的无升力回转体上预测压力的近似法精确度》.pdf)为本站会员(diecharacter305)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-2764-1952 Accuracy of approximate methods for predicting pressures on pointed nonlifting bodies of revolution in supersonic flow《在超音速流量下 在有尖的无升力回转体上预测压力的近似法精确度》.pdf

1、,.- -4I-1.The assumption is made that the component of mamentum normal to the sur-face is lost and the tangential ccmponent is unchanged. This yields apressure coefficientwhich depends only on the local slope. This simpleanalysis neglects the centrifugal forces due to body curvature. Equationswhich

2、take into account the centrifugal forces were presented by Busemann. ._ . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-(reference 3) and were later rederived in reference 6. It has beensuggestedthat either the Newtonian impact theory alone or with

3、 centrifugalforces consideredmight be applied at finite Mach nmibers with reasonableaccuracywhen the shock wave lies close to the body. Newtonian theorydoes not predict the variation of pressure coefficientwith Mach numberbut simply predicts the lhiting value for verj high Mach number.PROCEDURE AND

4、SCOPEThe investigation i.ncled three body shapes, the cone, the tsngentogive,l and a modified nose of an optimum body (fig. 1). The forepartof a Haack optimum closed body defined byr/r- = -(%921”4was used as modified by the addition of a cone tangent at x/1 = 0.05.The cone was used to replace the bl

5、unt nose h order to make it possibleto apply the theories being investigated. For convenience,this modifiedbody will be referred to as the optimum body in this report.The theories were applied to various combinations of fineness ratioandkch number. The following tables list the conditions investigat

6、edfor each theory:Linearized and Second-OrderTheories.- Cones OgivesZ/d es Z/d es 2/d 5.715 o 1.958 2.836 100 5.0 6 3.05.422 3 1.5?: 1.866 150 1.38.492 2.0 ; ;:3;10.146 3.0 2.8092.836 100 1.5 3.634 : 2.03.0 1.374 200 1.34.0 1.72.02.U31A tangent ogive is a pointed convex surface of revolution generat

7、edbyrotation of a circular arc, the tangent at the maximum radius beingpsrallel to the axis of symmetry.c- _ . _ _ Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6 NACA TN 2764Tangent-ConeMethod (Total-headratio applied each way)Itimum bodies Ogives

8、 IConical-shoOptimum bodiesc-ExpansionTheoryOgivesIZ/d3612236 Tk Z/d1.5 942 1.52 3366Newtonian TheoryConesZ/d5.7152.836es %50 3.0;:8.49210.14610 1.53.04.05.05.422Z/d 68 L.866 150 1.32.03.03.634L374 20 1.51.72.02.443MO9.06.03.06.012. o3.06.0Ogives-Z/d3612241.52%;:26.03.06.06.02:12. oThe accuracy of t

9、he methods was determinedby comp=ing both thenressure distribution and the integratedpressure drag obtained by thechosen methods with those obtained from standard solutions. Standardvalues or conee were obtained from tables of solutions to the theory ofTaylor and Maccol-1(for example, reference 3).

10、Solutions calcated byuse of the method of characteristicswhich took into account the variation .of entropy in the flow field were used as standards for curved bodies.Some of the characteristic solutions used were those presented reference 7 or were obtained from the cross plots in that reference._.

11、- _ . -_Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.NACA TN 2764 7The validity of using pressure distributions from characteristic solu-tions as standardshas been establishedby the close correlation of someavailable expertientalpressure data wit

12、h pressure distributions deter-mined by the method of characteristics. The error in integrating thecharacteristic solutionsto obtain pressure drag is esthated to beabout 2 percent.In applying the linearized and second-ordertheories, the appronatetangency condition and.the exact isentropic equatiorrf

13、or convertingvelocity to pressure were used, as was done in reference 2. In thecalculationsusing conical-shock-expansiontheory the vertex solutionwasobtained from reference 3 rather than from the appro-te equations ofreference 4. Both the simple Newtonian impact forces givingandthe = 2 Sinethe expre

14、ssion including centrifugal forces were used in calculatingpressure distributions over the bodies investigated.RESULTS AND DISCUSSIONThe results of this investigationsre correlated on the basis of thehypersonic similarityparameter, the ratio of free-streamMach number tobody fineness ratio. The hyper

15、sonic similarityrule which was derived forslender bodies in hypersonic flow (reference8) has been shuwn to holdover a wide range of Mach nurribersand fineness ratios, but is not validfor low Mach nunibers(.?0.- -. -Provided by IHSNot for ResaleNo reproduction or networking permitted without license

16、from IHS-,-,-MACATN 27& 19Ermrin dmgMethod of chomcterr”ti”hso Li7eorized tiemy - 14% Second-oder theay oD.+. NNv- .-/ L.- 0 Zo 40 60 80 /(wLongitudinal cootiinote, percent hngfhFigure 5. Gompurison of pressun? dishibtiions determined byvarious methods on a tangent ogive at K,B 0.936, I/d* 3,&u 2.80

17、9.-. . .- - . ._. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Error in&gMethod of chan?cteritiiTangentixme meb?odCOl HA%) +1 2 %Tangen#conemethod(vezfexH/H.) - ICawbal-sbockexpansim tieory - 9Wwtonian theory -208y .* .20 40 60 80 /00Longifuuinol

18、cooroinute, percent IengfhFigure 6. Gompurison of pressure o%tvhdions determined by vuriousmethods on u tingenf ogive at K= L I/ds 3, M. z 3._. . - -. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA ITT27+ 21.8o14,Error in dmgMethodof chorvcter

19、isticsLirized thecny -12%Second-amter theoq -4Tangenf-mnerpettvd (local H& +1 2Tongent-conemethd (vertexHrnO)- IConical-shock-expansiontieocv -29120 40I t60 80 /00Longitudinal cootdinal?, percent lengthfigure Z Gomporison of pressure disfribufion determined byvarious methods ODo fungenf ogive ut KS

20、1, I/d= 2, A 2._. .- . - - -.- .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-22 mm m 27kGrorin dugAL-ihodof cbonrcterkiim- - Tangenf.cone mew coIH/ ) +12 %-A- Tangent-conemetlvd (wxIY&) -12. . Coni&-sho&xwnsion theay -12- - Newtonian /beefy -/ 77

21、t8,1t8-/=5=20 40 60 80 /00Longituohl coordinate, percent lengthFigure 8. Comparison of pnwsum distributionsby different methods on u modified optimumK=j, /d= 3, =3.determinedbody of. . ._a_ ._Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-,IIIIJi,.

22、“YQ. .“i(.Error in dragMethod of characteristicsTangentione methd (1OCOI H/H. ) + 8%Tangent-cone n%?tiod (vertex W& ) -39Conicol- shock-expansion theory +/IWwfonian theory -6Newtonian phs centrifugal forces1 I I20 80 I&wLongifud?”wordh fe, pt%enf A-e 9 Comkt?n of pressure dmWbu?%ns defm?lned byd%?i%

23、wf metiods on a Amgent ogk? of KS 2, Ma 3, MO = 6,-5”P“Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.8.6*.4.2o 20 40 60 80Longitudinal coordinate, rcent lengthFigure 0.- Ctmporison of pressure oistributlons determined byvurious methods on u hngent

24、 ogive of K= 2, I/d= L5, MO=3./00. . . . - . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-IIIIIII(III)S)hvlaY/ty poramete KFigure Il. Accurucy of various uppvximate methods in inhgmted pressure drag.GProvided by IHSNot for ResaleNo reproduction o

25、r networking permitted without license from IHS-,-,-.26.08, Qa.06.04.0200 Seoond- ordertheorya75 Conibol-shock-expansiontheoryx Mefhodof churuckrisfics.1 3 4 5I6Much number, MORgure /2.-Exumple of hterpohto for drug inefficienton tungenf ogive, 14=3.MU.WW .84-52 - 1(WJ - - . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1