ImageVerifierCode 换一换
格式:PDF , 页数:43 ,大小:663.15KB ,
资源ID:836308      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-3176-1954 Wall interference in wind tunnels with slotted and porous boundaries at subsonic speeds《在亚音速下 带有开缝和可渗透边界的风洞器壁干扰》.pdf)为本站会员(confusegate185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-3176-1954 Wall interference in wind tunnels with slotted and porous boundaries at subsonic speeds《在亚音速下 带有开缝和可渗透边界的风洞器壁干扰》.pdf

1、NATIONALADVISORYCOMMITTEE. FOR AERONAUTICSTECHNICAL NOTE 3176WALL INTERFERENCE IN WIND TUNNELS WITH SLOTTED ANDPOROUS BOUNDARIES AT SUBSONIC SPEEDSBy Barrett S. Baldwin, Jr. , John B. Turner,and Earl D. KnechtelAmes Aeronautical LaboratoryMoffett Field, Calif.WASHINGTONMay 1954z-=Provided by IHSNot

2、for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECH LIBRARYKAFB,NM.V9Illlllllll!llllllll!llu(luNATIONAL ADVISORY COMMITIEEFOR AERONAUTICS onb5izqTECHNICALWIT 3176uWALL INTERFERENCE IN WIND TLJNTiELsWITH sLom ANDsumARYLinearized compressible-flowanalysiswind-tunnel-wal

3、l interference for subsonicSPEEDSB. Turner,is applied to the study offlow in ei,ther”two-POROUS BOUNDARIES AT SUBSONICBy Barrett S. Baldwin, Jr., Johnand Earl D. fiechteldimensional or circular test sections having slotted or porous walls.Expressions are developed for evaluatingblockage and lift int

4、erference.INTRODUCTIONa71In solid-wall wind tunnels the effects of blockage severely limitmodel sizes that can be tested at high subsonic speeds; in fact, the*model must become vanishingly small as sonic speed is approached. Ithas been demonstrated that if the walls are ventilated (e.g., slottedor p

5、orous) then blockage is reduced and much larger models can betested. However, wall-interference effects, although reduced, stillexist and must be evaluated in order to correct the wind-tunnel data tofree-air conditions.It is the objective of the present investigation to analyze two ofthe principal w

6、all-interference effects, blockage and lift interference,for two- and three-dimensional subsonic flows in ventilated testsections, where blockage refers to the mean incremental velocity inducedin the vicinity of the model by wall interference and lift interferenceis the mean upwash so induced. In th

7、e three-dimensional case it isconvenient to perform the analysis for a circular test section. Theresults obtained for the circular test section may be applied to a squaretest section of equal cross-sectional area since the wall interferenceat the center of the tunnel should be relatively insensitive

8、 to such achange in the shape of the wall.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACflTN 3176SYMBOLSAabcGgh10IIK.K=K1LMme?nrn!lRr,e,xufactor in Fourier integral transform of q*slot width of slotted wall (see fig. 1)wing span of model wingc

9、onstant factor in nonlinear term of boundary equationFourier integral transform with respect to x of dummy variable of Fourier transformhalf tunnel height modified-Bessel function of the first kind and order zeromodified Bessel function of -thefirst kind and order onemodified Bessel function of the

10、second kind and order zeromodified Bessel function of the second kind and order oneslot constant,- slot separation oflift on the modelnsin()lslotted wall (see fig. 1)free-streamlsli qj dqsinh (q)(20)is obtained for the additional stream velocfiy at the position ofthe model due to the walls. -.Solid

11、wall.- Letting K m or l/R- m in equation (20) esme V3flu J e-% X me= dq=K 2fi2h2o sinh (q) 24 2h2E wIdeal porous wall.- At K= O equation_ becomesw cosh (q) -Au = 1K=o q11(q)2”+ ,(:)J4Kl(q)Io(q)+(q) Io(q)+ q(q)Il(q)- qroo(q2+$)KddIdd 10($ .( the shape of the curvethe ends and interpolated in the midd

12、le. A graph ofin figure showing the variation of blockage factorfor the cylindrical, ideal slotted tunnel.(39)the values for thevalues of K/r.was calculated nearequation (38) appearswith slot parameterAgain, letting +.0 has the same effect on the blockage cor-rection as letting (1/R)-0,so that near

13、sonic speed the ideal porouswall should act like an open jet and the slotted wall should act likean ideal slotted wall.Lift Interference in a Circular TunnelThe upwash correction will be calculated using the infinitesimalmodel size approximation and the approximate boundary condition ofequation (6).

14、s Let x be the coordinate in the free-stream direction, z thecoordinate in the direction of lift on the model, and y the remaining.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-18 NACA TN 3176*Cartesian coordinate. The cylindrical coordbiates r and

15、 6 are related -to the Cartesian coordinatesby “r= fia.d=be seen from reference 1 that the appropriate free air%rb(r 1+ )h i;er sin e. It can “solution is(40) which is the potential of a horseshoe vortex having infinitesimal span.The ftictthat the actual span is finite introduces higher-order termsw

16、hich are negligible at distances large compared to the size of the .:=+model. Here rb is related to the lift on the model hy.- The Fourier transformAn arbitrary parameter athe Fourier transform of afunction be/L= purkl . (41)with respect-to x of 91 cannot be found. _will be introduced into the poten

17、tial so that “” -”related function can be.found. Let thisP= = (Je-a%+p=a -CJ-ic-ii= sineh-r - e -aax ) rso that .Then a will be eliminatedwith a at zero.From reference 4 it islim ql = Q1aofrom the resulting by taking thefound that the Fotiier transform of(42) .limit e-a is r K= (r) . By the use of a

18、n inversion,fl “-”differentiation, and reinversion, as in the derivation of eQuatiOn (33),b -ah iS it is found that the transform of eaxs.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TN 3176 19igarKl(f3r,/O(4+(:)pq) -qo(q7 1I, . * * . rProvid

19、ed by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-$Reacing 11 (qr/ro) by its power serie expanston, differentiating with respect to z,which is equal to r sin e, and setting r = O yields()L(q) Io(q)+ %(!) ll(q)l qs COS (:)l(q) - q +KJq) NJ ()2-K.= 0 q2112(q)

20、+ “ II=(q) - qIo(q)12roIdeal “slotted.wall.- When l/R is set equal to zero in equa-tion (48), a limiting process is required to.obtainthe correct result _ ;at (/R) = O. The result of this process is ,Aw =-fi“E=oOpen jet.- LettingThe value of Aw inthe values for the.closed1734nro2()Kl-r.K +1ro :K = O

21、 in equation (50) yieldsrbAw =- -P 4flro2:=0rK -o(50)the general case of equation (48) lies betweenwall “andthe open jet.CONCLUDING REMARKSA method of evaluatingwall interference of yartly open walls inolv- _ing mixed potential and viscous flows has been presented. EWressions forblockage and lift in

22、terference for both slotted and porous walls have beenderived. Some new details of the method may prove useful in other theo-retical treatments of this type of problem.The results of the analysis indicate that near sonic speed, the*-P -.blockage correction for an ideal porous Wall.approaches that of

23、 OPen ._. -,jet. Similarly, any linear viscous or taper_$fectof a 810tted wall issuppressed near sonic speed, so that the blo_ckagecorrection approaches- -that of an ideal slotted wall.Ames Aeronautical LaboratoryNational Advisory CommitteeMoffett Field, Calif.,.- .for AeronauticsY29, 1953Provided b

24、y IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-lUiCATN 3176 23.APPENDIX ADERIVATION OF THE BOUNDARY EQUATION .In this appendix an approximate smoothed or average boundary equa-tion for a slotted wall will be derived.An ideal slotted wall has zero perturbation

25、 pressure at the slotsand zero normal flow at the strips. These conditions can be expressed6.8a(p=o at the slotsz*.O at the stripsan I(Al)When the slot spacing and model dimensions are small ccmpared totunnel dimensions, the perturbation flow can be separated into a rapidlyvarying and a relatively u

26、niform part so that the two parts can beinvestigated separately. It till be shown that the effect of the rapidlyvarying part can be replaced by a condition on the relatively uniformpart.-Let q, , ?, amd = represent the rapidly varpng part of the flowfield and , u, v, and w the remaining part of the

27、perturbation flow.For a plane wall at z = h equations (Al) require thatwU+u= o at the slots1(A2);+W=O at the stripsIn additionc= -F.w.o far from the wall (M)In order to solve for , use canbe made of the fact that u, v,and w are nearly constant at the wall compared to ti,%, and %, sothat u and w canb

28、e considered constant in equations (A2).Since the slots lie along the x direction, iS nearly cotantin the x direction, so that atifix csnbe neglected compared toa?jayWd a%z. As in slender airplane theory, this leads to a two-dimensional crossflow for whichProvided by IHSNot for ResaleNo reproduction

29、 or networking permitted without license from IHS-,-,-24 MICA TN 3176(A4) - .Then can be of the form Q(x) f(y,z) where Q(x) is a slowlyvarng fction of x, and f(y,z) satisfies the two-dimensionalLaplace equation. Then,?.!. f(y,z);=ax axand since ; is equal to -u, a constant, at the slots, f(y,z) must

30、 beconstant at the slots or=Qaf=oh byat the slotsThis equation-canbe used to replace the first of equations (A2),and altogether there results-V=o at the slotsassuming thatEquations$= -w = constant at the strips1(A5)? =7= 3.0 far from the wallEl (A7)transforms the region under consideration in the El

31、 plane to the entireright half of the .52 plane, as can be seen by following the procedureoutlined for the first transformation. It is found that in the =plane, the slot lies along the imaginary axis from -i sin (fia/2Z)to+i sin (ma/2Z) and the solid boundary including the two half strips liesalong

32、the imaginary axis outside of *i sin (fia/2Z)0The transformationE= ,2+- (M)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26 IfACATN 3176The neglected termszero at infinity if+: (h-X) w(hx) AZn e1A(h-X) +W (h-X) -r.transforms the region under consid

33、eration to tlepos.itie real half ofthe nFi”()lj at hem”and melds(All)for a plane wa.In considering a curved cylindrical wall, ft appears that the aboveresults are not altered appreciably if the radius of curvature of thewall is everywhere large compared to the slot spacing.2 Hence, it can beassumed

34、that equations (All) are applicable to any slotted wall.2For a circular cylindrical slotted wall, solution of the boundary valueproblema: o=)%2 (u+:) uin addition to the usual requirements for linearization. This addi-tional requirement can be reasonably relaxed to(w + 3)2 c2uU at the wall (A13)Equa

35、tion (AIO) indicates singularities,in at the edges of.theslots. Experience with wing leading edges indicates that this.dis-crepancy can be reasonably ignored. Howeverfi_equation(A13) should atleast be satisfied at the center of the slots. The effect of thiscondition on u and v will now be determined

36、. Differentiatingequation (AIO) yieldscosh.1: (h-X)dOw =WaxJsid2 + h-x)+ in (=)-w. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MC m 3176ThenCOBI()Tw =Wz =hi in (!)”:” (?) w=;” hand(w+;) = wIz =h()sin Y 21so that equation (A13) becomes()sin= z2-1or29(a4)This result places a lower limit on the ratio of open to total area(a/Z) for which the results of this analysis can be expected to applyto slotted sections.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1