ImageVerifierCode 换一换
格式:PDF , 页数:49 ,大小:993.79KB ,
资源ID:836316      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836316.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-3344-1954 Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer.pdf)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-3344-1954 Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer.pdf

1、C*1 ,1NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICALNOTE3344TIIEORETICALANDEXPERIMENTALINVESTIGATIONOFAERODYNAMIC-HEATINGANDISOTHERMALHEAT-TRANSFERPARAMETERSONA HEMISPHERICALNOSEWITHLAMTNARBOUNDARYJL%YERAT SUPERSONICMACHNUMBERSBy HowardA. StineandKentWanl.assAmesAeronauticalLaboratoryMoffettField,

2、 CaYf.UOAcX3PY:RETURRAFWL(DOGL)KIRTLANDAFB,N.IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECHUBRARYKAFB,NMNATIONALADVISORYCOMMITTEEFORAEIJONAUT1Iilllllllllllllllllllllllll-001sL07iTECHNICALNOTE3344THEORETICALANDEXPERIMENTALINVESTIGATIONOFAERODYN

3、AMIC-13?ATINGANDISOTHERMALHEAT-TRANSFERPARAMETERSONA HEMISPHERICALNOSEWITHLAMINARBOUNDARYIJNERATSUPERSONICMACHNUMBERSByHowardA.StineandKentWanlassSUMMARYTheeffectofa strong,negativepressuregradientuponthelocalrateofheattransferthrougha laminarboundarylayerontheisothermalsurfaceofanelectricallyheated

4、,cylindricalbodyofrevolutionwithahemisphericalnosewasdeterminedfromwind-tunneltestsataMachnuniberof1.97. Theinvestigationindicatedthatthelocalheat-transferpara-meter,Nu/, basedonflowconditionsjustoutsidetheboundarylayer,decreasedfromavalueof0.65*O.1Oatthestagnationpointofthehemi-spheretoavalueof0.43

5、K).0atthejunctionwiththecylindrical.afterbody.Becausemeasurementsofthestaticpressuredistributionoverthehemisphereindicatedthatthelocalflowpatterntendedtobecomestationaryasthefree-streamMachnumberwasincreasedto3.8, thisdis-% tributionofheat-transferparameterisbelievedrepresentativeofallMachnumbersgre

6、aterthan1.97andoftemperatureslessthanthatofdis-sociation.Thelocalheat-transferpsrameterwasindependentofReynoldsnu?iberbasedonbodydiameterintherangefrom0.6xIto2.3x106.IThemeasureddistributionofheat-transferparameteragreedwithin*I8percentwithSJIapproximatetheoreticaldistributioncalculatedwithforelmowl

7、edgeonlyofthepressuredistributionaboutthebody.Thismethod,applicabletoanybodyofrevolutionwithanisothermalsurface,combinestheManglertransformation,Stewsrtsontransformation,andthermalsolutionstotheFallmer-Skanwedge-flowproblem,andthusevaluatestheheat-transferrateinaxisymmetriccompressibleflowintermsoft

8、heknownheat-transferrateinanapproximatelyequivalenttwo-dimensionalincompres-sibleflow.Measurementsofrecovery-temperaturedistributionsatMachnumbersof1.97and3.04yieldedlocalrecoveryfactorshavinganaveragevalueof0.823+0.012onthehemispherewhichincreasedabruptlyattheshouldertoanaveragevalueof0.840*C).012o

9、nthecylindricalafterbody.Thisresultsuggeststhattheusual,representationofthelsminarrecoverya71factorasthesquarerootofthePrandtlnumberisconservativeinthepresenceofa strong,acceleratingpressureadient.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2INTR

10、ODUCTIONNACATN3344Duetotheprocessesoffrictionandcompression,abodymovingthroughtheatmosph=eaccumulatesasthermaleneraportionofitsmechanicalenerofmotion.Thephysiological,structural,andaero-dynamicramificationsofthiswell-knownfactintherealmofhigh-speedflightconstitutetheaerodyrmnicheatingproblem.Thepres

11、entstatusofknowledgeinsofarastheaerodynamicaspectssreconcernedwillbediscussedinthefollowingsection.Itissufficientnowtostateonthebasisofareviewofselectedliterature”(refs.1 through25)thattheheattransferthroughthesurfaceofa supersonicvehiclecanbepre- dietedwithconfidenceonlywhentheheatpathisthroughregi

12、onsoflaminarflowandsmallpressuregradient.Becauseinsupersonicflowaconstant-pressuresurfacehasa shsrpleadingedgewhichisdifficult,ifnotimpossibletocool(refs.15and16), thepracticalvehicleforsustainedsupersonicflightmay,ofnecessity,beblunt.Althoughfavor- abletothepromotionoflsminarflow,theseverepressureg

13、radients .associatedwithbluffbodiescanresultinheat-transferratesquitedif-ferentfromthoseonconstant-pressuresurfaces.Theheat-transferchar-acteristicsofthecompressibleboundarylayeronbluffbodiessrethere-forerequired.Thepresentinvestigationhasasitspurposethemeasurementin .supersonicflowofhminsr-boundary

14、-layertemperature-recoveryfactorsandlocalheat-transfercoefficientsontheuniformlyheatedsurfaceofa.hemisphere-cylinder.Theexperimentalresultsme comparedwithanewly #developedmethodofapproximatepredictionwhichutilizesexistingsolu-tionstotheboundary-layerproblem,andwhichbodyofrevolutionwithanisothermalsu

15、rface.JWIIIYSISStatusofKnowledgeisapplicabletoanybluffTheultimaterateofheattransfer-througha giventypeofboundarylayer(i.e.,laminarorturbulent)hasbeenfoundtodependuponthefluidflowconditionscharacterizedbyMachnumberandReynoldsnumber,thefluidpropertiesspecifiedbyPrandtlnumber,thesurfacetemperaturedistr

16、ibution,andthebodyshape.Inordertocalculatetheheat-transferratefromboundary-layertheory,thebodysurfaceiscommonlyassumedto _bea flatplateoraxisymmetric.Effectsofbodycurvatureuponthepres-suredistributionnormaltothesurfaceareneglected,andbody-shapeeffectsareassumedtodependonthestreamwisepressuredistribu

17、tionalone.Whendealin”gwithbodiesofrevolution,anadditionalshapeparam-etermustbeconsideredwhichaccountsforthevariationofcircumferencealongtheaxis.HoWever,becausethisadditionalshapeparsmeterhasbeenshowntorelatetheaxisyrmnetricboundary-layerflowwithanassociateda“.-.aProvided by IHSNot for ResaleNo repro

18、duction or networking permitted without license from IHS-,-,-NACATN 3344 3s two-dimensionalflow(ref.2),itispossible,withoutlossingenerality,toapplytwo-dimensionalresultstoaxisymmetricbodies.*A representativesampleoftheextensiveliteraturedealingwithlaminar-boundary-layerheat-transfertheoryisgiveninre

19、ferences3throughXL.Thelargebodyofemlysisbaseduponintegralmethodsofsolutionhasbeenexcludedfromthissurveypartlyintheinterestsofbrevity,andpartlybecausetheaccuracyoftheseintegralanalysesisjudgedbycomparisonwithsolutionssuchasthoseofreferences3through11. Fluid-propertyandflow-psraetereffectsarestressedi

20、nreferences3, k, and5.Nonisothermalsurfacesareconsideredinreference6. Pres-suregradienteffectsarestudiedinreferences7 and8. Effectsofsmallpressureandwall-temperaturegradientssreinvestigatedinreference9.Bothpressure-gadientandfluid-propertyvariationsareconsideredinreference10,andpressure-gradientandw

21、all-temperatureeffectsaredis-cussedinreferenceIL. Theresultsofthesestudiessuggestthatfluid-propertyandflow-psrsmetervariationsexerta relativelymildinfluenceonthelocalheat-trsnsfercoefficient.Pressureandwall-temperaturegradients,ontheotherhand,canproducelocalheat-transfercoefficientswhichdepartsignif

22、icantlyfromtheisobaricendisothermalpredictions.Theinfluenceofshapeisillustrat+iinreference12-which,inciden-tally,presentsanexcellentaccountofmethodsemployedtopredictheattransfer-whereinaprocedureisdevelopedfortheChowever,sincethedataofreference20wereobtainedundertransientconditionsinthepresenceofa s

23、urfacetemperaturetendingtobecomenonisothermal,thevalidityoftheseresultsisuncertain.HeatTransfer.AccordingtotheNewtonianLawofheattransfer,thethermalflowthroughaunitareaofthefluidincontactwithanisothermalsmfaceisproportionaltothedifferencebetweentheactualskintemperatureandtheskintemperaturecorrespondi

24、ngtonoheatflow.ThefactorofProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACATN3344proportionality,calledthelocalheat-transfercoefficient,depends, *fn.casesofforcedconvection,upontheboundary-layertype,andtheflow,fluid-property,andpressure-gradient

25、parametersmentionedpre- Vviously.Forlsminsrflow,thelocalNusseitnumberformedfromthelocalheat-tramfercoefficient,thelengthofboundary-layerrun, andthelocalfree-streamthermalconductivitycube combinedwiththelocalReynoldsnumberinto a localheat-transferpersmeter,definedastheratiooftheNusseltnumbertothesqua

26、rerootoftheReynoldsnumber: .hx/klj% “JKXILl(1)(ForNotation,seeAppendixA.)Onthebasisofavailabletheoryforisothermalsurfaces,moderateMachnumber,andsmalltemperaturedifferences,onecanreasonthatthe .localleminarheat-transferparameteronthebluntnoseofabodyofNu/fiO.30. Thehighervalue(atthestagnationpointofa

27、sphere)ispredicted(foru =0.7)inreference22byneglectingcompressibility;thelowerfigureisappli-cabletoa flatplateorahollowcylinderwithsurfacep=alleltotheairstream. a71Noexact,simpleexpressioncanbewrittentopredictthelocalheat-transferpsrsmeterforpointsonthesurfaceofabodylyinginregions Mofarbitrarypressu

28、regradients,althoughanumberofapproximatemethodsareavailable(refs.12,23,and24forexample).Anotherapproximatemethod-anadaptationofatechniquedescribedinreference22-whichiseasytoapplytouybody ofrevolutionandpromisestobefairlyaccurateforuniformsurfacetemperaturesnotgreatlydifferentfromthestagnationtempera

29、ture-wasdevelopedinconjunctionwiththepresentexperimentalinvestigation.Thismethodhastheadvantagethatnoknowl-edgeisrequiredofthevelocityortemperatureprofilesintheboundarylayer;onlythepressuredistributionaboutthebodyneedbeknown.Themainresultsofthisanalysissresummarizedinthefollowingparagraphs;thedetail

30、scanbefoundinAppendixB.Briefly,themethodmakesuseofthetransformationsofMangler,(ref.2)andStewartson(ref.25)toremovetheproblemfromtheexisym-metriccompressibleplanetotheapproximatelyequivalenttwo-dimensionalincompressibleplane.Thelocalheat-transferpsnuneterontheaxisym-metricbodyincompressibleflow,IVu/a

31、nd,consequently,thedistributionofaxisymmetriccompressibleheat-transferparsmeterNu/fi canbeestablished.Inthepresentinvestigation,thelocalheat-transfer-parameterdistributiononthesurfaceofahemisphere-cylinderiscalculatedusingtheexpertientallydeterminedpressure-gradientparameter,m,accordingtotheforegoin

32、gmethod.RecoveryTemperatureandRecoveryFactorWhenabodymovesthroughtheatmospherethesurfacetendstoassumea temperaturedistribution,calledtheequilibriumtemperaturedistribu-tion,suchthatthelocalheattransferateachpointisaminimum.Intheabsenceofradiationandinternalheatflowtheminimumheattransferiszero;thisequ

33、ilibriumdistributioniscalledtherecovery-temperaturedistribution,andthebmlyissaidtobeinsulated.Sincea spotonthesurfacecanassumea temperaturenogreaterthanitslocalrecoverytem-perature,thequestionofhowhotabodycanpossiblybecomeforgivenflightvelocityandambienttemperaturecanbeansweredbyinvestigatingtheprop

34、ertiesofinsulatedbodies.Therecoverytemperatureatapointonaninsulatedbodyisspecifiedbythesumofthelocalfree-streamtemperaturejustoutsidetheboundarylayerandthetemperatureriseacrosstheboundarylayer.Thetemperatureriseacrosstheboundarylayerdependsupontheboundary-layertypeandthedimensionlessflow,fluidproper

35、ty,andbody-shapeparametersmentionedpreviously.Itisconvenientto comparetheactualtemperatureriseacrosstheboundarylayerwiththerisewhichwouldoccurifthelocalfreestreamwerebroughttorestadiabatically.InthenotationofAppendixA,theratiosoobtainedcanbewrittenTr-T1Cr=Tt-T1 (8)ThefactorCr iscalledtheferentvaluef

36、orlaminarthan. Withtheaidofanaloguetemperature-recoveryfactorandhasadif-puterssmdnumericalinteations,thelocallaminarrecoveryfactorson-aninsulatedflatplatefiairIthemaiimumrateofdecreaseis. abouthoFperminute.Althoughthermalequilibriumisneverachieved,itispossibletoobtainvalidtemperaturedataundercertain

37、operatingconditions.WindtunnelNo.2wasusedforsomeofthetestsbecauseitprovideshigherMachnuribersandReynoldsnumbersthanwindtunnelNo.1.TestBodyA hemisphericalnoseshapewasselectedforthetestbodyinthepresentinvestigation.Considerationsofexperimentalconvenience(suchaseaseofconstruction,mounting,andtesting)an

38、dtheprecedentofcon-siderabletheoreticalbackgrounddealingwithflowaboutspherescombinedtosuggestthehemisphereasthetestbcdy.Thek-inchdiameterhemi-sphericalnosehadacylindricalafterbodywitha lengthlimitedto3inchestoavoidintersectingthereflectionofthebowshockwavefrmnthewind-tunnelwalls.Threesting-supported

39、modelsofthetestbodywereconstructed,eachhavingthessmeexternalsizeandshape,andsur-faceroughnesses(lessthanabout20microinches).Theinstrumentationhousedineachandthesting-supportdetails,however,weredifferent.0Pressure-distributionmodel.-Thepressure-distributionmodel(fig.l(a)madefromaluminum,hadawallthick

40、nessofone-halfinch.Twenty-two0.031-inch-diameterstatic-pressureorificesWereplacedonthesurfaceinaplanepassingthroughtheaxisofrevolution(meridianplane). BrassplugscontainingthedrilledorificeswerepressedProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10

41、 NACATN3344into3/16-inch-diameter,3/8-inch-deepholesinthealuminum.Copper-tubingattachedto-theplugspassedradiallythrough0.064-inch-dismeterholesintothemodelcavityandemergedthrougha2-inch-diameterhollow astingthreadedintothebase.Eachplugandtubewascoatedwithanalkydresinbeforeinsertiontopreventleaks-bet

42、weenthecavityandthesurface.Recovery-temperaturemodel.-Therecovery=tegperaturemodel(fig.l(b),madefromstainlesssteel,had,exceptfortheafterbody,a nominalwallthicknessof0.020inch.Thethicknessofthecylindricalportionincreasedlinearlyfrom0.020inchatitsjunctionwiththehemi-sphere(shoulder)to1/8inchatthepoint

43、of”attachmentofthel/2-inch-thickbasering.Thethinwallservedtominimizeboththeheatcapacityofthemodelandthelongitudinalheatconductionwithintheshell.Stainlesssteelwasusedbecauseofitslowthermalconductivityrelativetoothermetals.Twenty-fourconstantanwiresweresolderedintoholesinthesurfacelyinginarneridisnpla

44、ne,asshowninfigurel(b).Asinglestainless-steelwireconnectedtotheinsideoftheshellnearthebasecompletedthereturncircuitforthetwenty-fourstainless-steel-constantanthermocouples.Thethermocouplewireswerebroughtintothe2-inch-dibneterhollowstingthroughapressure-tightfittinginthebase.Theassemblywascalibratedi

45、na liquidbath.A coppertubecom-municatingwiththemodelcavitywasprovidedsothattheinternalairpressurecouldbereducedtolessthan400microns(0.016-inchHg)abso- *lutetominimizeinternalheattransferduetofreeconvection. Heat-transfermodel.”-Theheat-transfer-model(fig.l(c)wasastainless-steelshellwhichformedtheres

46、istanceeleme”ntofthelow- voltage,high-amperageelectricalcircuitusedtoheatthebody.Thecircuitwasarrangedsothata 60-cyclealternatingcurrentcouldbepassedlongitudinallythroutheshell,enteringthrougha copperbusbarimbed-dedinthenose,andleavingthrougha copper-collectorringwhichformedthebase.Theinteriorsurfac

47、eoftheshellwascontouredtoprovideaneffectivethicknessdistribution,andthereforearesistancedistributionwhichwasproportionaltotheexpectedheat-removalcapabilitiesoftheairstreamwhenthetemperaturewasuniform.Twenty-twocopper-constantanthermocouplesweresoft-solderedinholesdrflledthrougl”theshellinameridianpl

48、ane,withthethermocouplejunctionswithinl/32inchoftheoutersurface.Thespacingisindicatedinfigurel(c).Thewirester-minatedata selectorswitchoutsidethewindtunnelwhichwasarrangedsothat,onalternatesidesofthebody,suctieedtngpairs“ofthecopperwireswhichformedonesideofeachcopper-constantanthermocouplecir-cuitco

49、uld.beutilizedastapstomeasuretheA.C.voltagedropexistingalongany12arconthehemisphere.A simultaneousindicationoftem-peraturecouldbeobtainedfromthethermocouplelyingwithinthesameintervalbutdisplaced1800abouttheaxis.Thestationsontheafterbody .werespacedthesanedistanceapartaswerethoseonthehemisphere.Topreventheatgeneratedinthenosefromflowingbyconductionintothe3/thestaticpressureacrosstheboundary

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1