ImageVerifierCode 换一换
格式:PDF , 页数:46 ,大小:940.26KB ,
资源ID:836333      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836333.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-3551-1955 Experimental investigation at low speed of effects of fuselage cross section on static longitudinal and lateral stability characteristics of models having 0 截.pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-3551-1955 Experimental investigation at low speed of effects of fuselage cross section on static longitudinal and lateral stability characteristics of models having 0 截.pdf

1、tIL.NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICAL NOTE 3551EXPERIMENTALINVESTIGATIONAT LOW OFEFFECTSOFFUSELAGECROSSSECTIONONSTATICLONGITUDINALANDLATERJ4LSTABILITYCHARACTEKWTICSOFMODELSHAVING0 AND45 SWEPTBACKSURFACESByWilliamLetkoandJamesL. WilliamsLangleyAeronauticalLaboratory. LangleyField,Va.0“

2、WashingtonDecember1955AFwx . . . . . . . . . . . . . . . . . . . . y. _-_A z _1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-vNATIONALADVISCSRYCCMMTTEEFORAERONAUTICSzizii:DCILLL72TECHNICALNOTE3551EXPERIMENTALINVESTICXTIONATLOWSPEEDOFEFFECTSOFFUSEIA

3、GECROSSSECTIONONSTATICLONGITUDINALANDLATERALE3!ABIIlTYCHARACTERISTICSOFMODELSHAVING0AND45SWEPIBACKSURFACESByWilliamInottheleastoftheseistheairplanefuselage.Variousjet-engineinstallationsinfuselagesandinwing-fuselagejunctureshaveresultedinavarietyoffuselagecross-sectionalshapes.Althoughtherearenumero

4、usdataonconfigurationswithbodiesofcircularcrosssectionsuchasthosepresentedinreferences1,2,and3, littledataofsystematicnatureareavailableforothershapes.- . . _ _ . _ . _ _ _ _ -_ _Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATN3551Inordertopr

5、ovidedataontheeffectoffuselagecrosssectiononairplanestaticlongitudinalandlateralstabilitycharacteristics,severalfuselageswithinterchangeablewingandtailsurfaceshavebeentestedintheIa.ngleystabilitytunnel.Thefuselagestestedwereofround,square,andrectangularcrosssections.Thefuselagesofsquareandrectangula

6、rcrosssectionshadroundedcorners.ThewingsandtailstestedsuccessivelyonthefuselageshadOoand45sweepback.Alltheconfigurationsweretestedwiththewinginthemidwinglocation.Pre-sentedhereinarethestaticlongitulisticsoftheseconfigurations.SYM1301Saudlateralstabilitycharacter-Thedatapresentedarereferredtothestabi

7、litysystemofaxeswiththeoriginattheprojectionontheplaneofsymmetryofthecalculatedaerodynamicandangularsymbolsareCLCDCyclcm%LDFyMxMycenterofthewing.Positivedirectionsofforces,moments,displacementsareshowninfigure1. Thecoefficientsanddefinedasfollows:liftcoefficient,L/qSWdragcoefficient,D/qlateral-force

8、coefficient,FY/Wrolling-mmnentcoefficient,%pitching-momentcoefficient,MY/wyawing-momentcoefficient,/qswbwliftdraglateralforcerollingmomentpitchingmomentMZ yawingmoment . .- - . -. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3551q dynsmicpre

9、ssure,2v free-streamvelocityP massdensityofairA aspectratio,b2/Sb span,measuredperpendiculartofuselagecenterlines surfaceareac chord,measuredparalleltoplaneofsymmetryCr rootchord “Ct tipchordE meanaerodynamicY coordinatealongI/2chord;forexample,6W=% cW2dyY-axis,measuredfromplaneofsymmetrylv or ZH ta

10、illength,distanceel tO.fUSee centerlinefrommountingpointto %# r H/4h perpendiculardistancefromfuselagecenterlineto Ev/4(tailrootchordcoincideswithfuselagecenterline)R ordimteofcircularfusehger fuselagecornerradius,R/3w localhalf-widthofd localhalf-depthofsquarefuselage,squareorrectangularfuselagesqu

11、areorrectangularfuselage;ford=wlongitudinal-distancealongfuselagecenterlinetaperratio,% Icrangleofsweepbackofqyarter-chordline,degangleofsideslip,deg.- . -_ _ . _ - . . . . . ._. _Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3551azimuthangle

12、,degangleofattack,deg.ACyPAdnP contributionofthetailgrouptoderivatives;thatis,forthewingon,forACYP= (cyP)w+F+v+H()- cyW+Fthewingoff,ACY = () (5)CypF+.V+H- FBforawing-tailconfiguration,A% =P (%) (%)W+V+H- PWSubscriptsandabbreviations:F fuselage;usedwithsubscripts1to4todenotevariousfuselages(seefig.2)

13、H horizontaltail;usedwithsubscripts1 and2 (seefig.3)v verticaltail;usedwithsubscripts1to6todenotevariousverticaltails(seefigs.3 and4)w wing;usedwithsubscripts1and2 (seefig.3)J.- - - .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 3551APPARKTU

14、SANDMODELS5Thetestswereconductedinthe6-by6-foottestsection”oftheLangleystabilitytunnel.Themodelsweredesignedtopermittestsofthewingalone,thefuselagealone,thewing-fuselagecombination,orthefuselagewithanytailconfigurationwithorwithoutthewings.Drawingsofthecomponentpartsofthemodelstestedaregiveninfigure

15、s2to4 andintableI.A sideview,.crosssection,anddesignationofeachfuselageisgiveninfigure2. Thecoordinatesofthecircular-cross-sectionfuselagearegivenintableI. Thecoordinatesofthesquareandrectangularfuse-lagesweredeterminedsothatthevariationofthecross-sectionalareaofeachfuselagealongthelongitudinalaxisw

16、asthesameasthatofthecircularfuselage.TheequationsusedtodeterminethecoordinatesofthesqyareandrectangularfuselagesaregivenintableI. Therectangu-larfuselagewastestedbothwiththemajorcross-sectionalatisvertical(fusekge3)andwiththemajoraxishorizontal(fuselageJ). (Seefig.2.)Theconfigurationshadbothsweptand

17、unsweptwingandtailsurfaces.Thequarter-chordlinesweresweptback0and45fortheunsweptandsweptbacksurfaces,respectively.Thewingshadataperratioof0.6andanaspectratioof4. Thetailsurfacesalsohadataperratioof0.6.Theaspectratioandothergeometriccharacteristicsofthevarioustailsurfacesaswellasthoseofthewingscanbef

18、oundintableII.Drawingsshowingthegeometriccharacteristicsofthewingandtailsur-facesaregivenasfigures3and4. Alltheconfigurationsweretestedwiththewinginthemidwinglocation.Allliftingsurfacesweresetat0incidencewithrespecttothefuselagecenterline.Themodelsweremountedona singlestrutsupportatthequarter-chordp

19、ointofthewingswhichwerelocatedwithrespecttothefuselageandtailsurfacesasshowninfigure5. Fortestsofthecomplete-modelandfuselage-tailconfigurations,theverticaltailwasmountedsothatthevertical-tailroot-chordlinecoincidedwiththefuselagecenterline.Forthewing-tailconfigurations,thetailwasmountedatanappro-pr

20、iatetaillengthona steeltubeofsmalldiameterwhichwasfastenedtothewing.Theisolatedtailwasmountedonthesametubewhichwasthenattachedtothemodelsupportstrut.Forthewing-tailandisolated-tailtests,thetailareaincludedtheportionnormallyenclosedinthefuselage.Forcesandmomentsweremeasuredbymeansofa conventionalsix-

21、componentmechanicalbalancesystem.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6 NACATN3331.TESISANDCORREKZIONS .Testsweremadeata dynmicpressureof24.9poundspersquarefoot,whichcorrespondstoaMachnumberofabout0.13andaReynoldsnumberofabout0.71x 106base

22、donthemeanaerodynamicchordofthewings.Themodelsweretestedthroughanangle-of-attackrangefrom“ uptoandbeyondmaximumlift(ofwingsalone)atanglesofsideslipof0and*5.Testsofthecompleteconfigurationwerealsomadeatanglesofattackof0,10,20,and26througha sidesliprangefrom-20to20.Approxhhowever,theunstablecontributi

23、onofthecircularfuselageislessatthehighanglesofattackthanthatofthesquarefuselage.Theshallowfuselage(fuselage4)hasthehighestliftanddragatthehighanglesofattack.Addingthetailunittothefuselagesresults,ofcourse,instablepitching-momentcurvesatthelowanglesofattack(fig.9). Thecon-figurationwithshallowfuselag

24、eandtailistheleaststable.Forallfuselagesandfortheunswepttail,theslopeofthecurvesof plottedagainstu ispracticallyzeroatthehighanglesofattackforthetestcenter-of-avityposition.wing, tail,andwing-tailconfigurations.-characteristicsofthewing,isolatedtail,andaregiveninfigure10. ThedetailspertainingThelong

25、itudinalstabilitywing-tailconfigurationstothemountingofthe . . ._Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-8tailforentitledTheNACATN 3551thewing-tailandisolated-tailtestsaregiveninthesection“ApparatusandModels.”sweptandunsweptwingsusedinthepres

26、entinvestigationhavebeenreportedoninseveralotherinvestigationssuchasreferences5,6,and7,andthereislittleneed,here,todiscussindetailthechar-acteristicsofthewings:Figure10showsthataddingthewingtotheisolatedtailcausesadecreaseinlontudinalstabilityatlowanglesofattackwhichismuchlargerfortheunsweptwingthan

27、thatobtainedwiththeswept-wingcon-figuration.Thedecreaseinlongitudinalstabilityobtainediscausedbywingdownwash.Forboththesweptandunsweptconfigurations,thegeneralvariationofpitching-momentcoefficientwithangleofattackforthewing-tailcom!?igurationisverysimilartothevariationobtainedforthecompleteconfigura

28、tions.Forthecompleteconfigurationsthereis,ofcourse,a differenceininitialslopesatlowanglesofattack,mainlybecausetheunstablecontributionofthefuselagevarieswiththefuse-lagecrosssection,StaticLateralStabilityCharacteristicsCompletemodel.-ThestaticlateralstabilityderivativesCyPj,Czp,and CnP (obtainedfrom

29、dataat =*5)forthecompletemodelcon-figurationsaregiveninfigureIl. Forboththesweptandunsweptmodels,thereislittledifferenceinthevaluesof CnP fortheconfigurationswiththecircularorsquarefuselageatlowangiesofattack.However,thevaluesof CnP obtainedfortheconfigurationswithshallowfuse-lage(fuselage4)wereappr

30、eciablygreater(indicatinggreaterdirectionalstability),andthevaluesof CP forthedeep-fuselageconfigurationwereappreciablylessthanthoseobtainedforthecircular-andsquare-fuselageconfigurations.Thisdifferenceinthevaluesof attheBlowanglesofattackcanbeattributedmainlytothedifferenceinthefuselagecontribution

31、s.Exceptforthedeep-fuselageconfiguration(W1+ F3+V1+ Hi),thevaluesof CnP arepositiveandfairlyconstantthroughouttheangle-of-attackrangefortheunsweptmodels.ThevaluesOf Cnp for”thedeep-fuselageconfigurationarepositiveuptoanangleofattackofabout20afterwhichCn becomesnegative.ThesweptBconfigurationshavepos

32、itiveandnearconstantvaluesof Cn through-t3outthelowanglesofattack.Forallfuselageconfigurations;%becomesnegativeatthehigheranglesofattackandremainsnegativeforProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3551 9thetestangle-of-attackrangetionwh

33、ichhaspositivevaluesexceptforthesquare-fuselageconfigura-Of however,theangleofattackatwhichCnQ changessignisincreasedfromabout20.5to24.5.Fortheswetconfigurations(fig.13(b),theredesignedtails. -_ .- - . .- _ _Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IH

34、S-,-,-10 NACATN3551.decreasetheangleofattackatwhichand,aswasnotedearlier,thevaluesof CP forthecompletecotiigurationremainposi-tivearidnearconstantthroughoutthetestangle-of-attackrange(fig.n). Thevaluesof CnP fortheswept-wing-fuselageconfigura-tiondonotbecomepositivefortheangle-of-attackrangetestedex

35、ceptforthesquare-fuselageconfigurationwhichhaspositivevaluesof Cn$fora smallrangeathighanglesofattack.Thevariationof CZB withangleofattackissimilartothatobtainedforthecomplete-confiation,sinceCzB dependsmainlyonthewingcharacteristics.Theeffectoffuselagecrosssectionon CzPissmallforboththesweptandunsw

36、eptconfigurationsinthelowangle-of-attackrangebutbecomessomewhatlargeratthehigheranglesofattack.Aswasnotedforthecompleteconfigurations,Cy becomesveryPlargeatthehigheranglesofattackforthedeep-fuselageconfiguration,andtheeffectsoffuselagecrosssectionon CyP areverylargeattheseanglesofattack.Fuselageandf

37、uselage-tailconfiguration.-Thevariationwithangleofattackof Cy,P CZP,and CnP forthefuselagesisshowninfig-ure19. Dataarepresentedfortwocenter-of-gravitylocations;oneloca-tioncorrespondstothecenter-of-gravitypositionfortheunsweptcon-figurationsandtheothertothecenter-of-gravitypositionusedforthe. . - -

38、_ _ - . -. .-_Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.12 NACATN3551 .sweptconfigurateion.Thefuselagewiththemorerearward center-of-gravityposition(usedwiththesweptconfigurations)isslightlymoreunstabledirectionallythanthatwiththeforwardcenter-

39、of-gravitylocation.Atlowanglesofattack,theshallowfuselage(fuselage4) “isleastunstabledirectionally,whereasthedeepfuselagehasthegreatestdirectionalinstability.Theeffectoffuselagecrosssectionon CnP variesconsiderablywithangleofattack,andalthoughthevaluesof CnB forthesqyareandcircularfusehgearenearlyth

40、esameatlowanglesofattack,thereisa largedifferenceatthehigheranglesofattack.Thesameeffectsareobservedfor Cyp.Atthehighanglesofattack,relativelylargevaluesof CyP areobtainedforthedeepfuselage(fuselage3)aswasthecaseforconfigu-rationswiththedeepfuselagediscussedinprevioussections.Also,ratherhighvaluesof

41、 cYp areobtainedforthesquarefuselage.Forthefuselage-tailconfigurations,Cnp ispositiveinthe lowangle-of-attackrangeforallfuselageconfigurations;however% Premainspositivethroughtheentireangle-of-attackrangetestedonlyforthecircular-fuselageconfiguration.(Seefig.20.) Thedeep-fuselageconfigurationisthele

42、aststableinitially,andthevaluesof% becomenegativeata lowerangleofattackforthisconfigurationthnfortheotherconfigurations.Thisangleofattackisonly4forthesweptconfiguration.Boththesquare-anddeep-fuselageconfigura-tionshavelargenegativevaluesof Cyp athighanglesofattack.Thewing-offinterferenceorsidewashef

43、fectsofthefuselageonthetailcontributionto Cnp areillustratedinfigure21. HerethetailincrementACnP obtainedbysubtractingthevalueof Cnp forthefuse-lagefromthevalueof B ofthefuselage-tailgroupcmibinationisplottedagainstangleofattack.Alsoplottedinfigure21isthe CnBcontributionoftheisolatedtail.Theinterfer

44、enceeffectsuptoan-angleofattackofapproximately10aregenerallysmallandthereislittleeffectofcrosssectionontheinterferenceinthisrange.Atthehigheranglesofattack,cmnparisonofthetail-contributionincre-mentsofthevariousconfigurationswiththeisolated-tailresultsindi-catesthatthecircularfuselagehasbeneficialin

45、terferenceeffectsforbothsweptandunswepttails.Theeffectsofdeviatingfromthecircularcrosssectionareforthemostpartdetrimentalinterference(sideWash)effectswhicharegenerallylargebutvarywithangleofattack.Thesesidewasheffectsaremodified,.ofcourse,whentheh% iSadded.(Seefig.1.2.)Inregardtothetailincrementnjth

46、eresultsobtainedinreference10areofinterest.Thedataofreference10,whichwere,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3551obtainedatanforanunsweptanda negativeThisresultisinthepresentangleofattackof32,showatailtestedona flatfuselage13posit

47、iveincrementof CnPwithmajorsxesverticalincrementfora fkt fuselagewithmajoraxeshorizontal.thesameasthatobtainedatanangleofattackof32investigationforfuselages3and4,respectively(fig.21);however,ascanbeseenfromfigure21,thetailincrementvariesconsiderablywithangleofattack,andatsomeanglesofattacktheresults

48、areoppositethoseobtainedatanangleofattackof32.wing,tail,andwing-tailconfigurations.-ThevariationwithangleofattackOf CYB)CZB)and cnB forthewing,isolated-tail,andwing-tailconfigurationsis”presented”infigure22. Froma studyofthisfig-ureitcanbeconcludedthatthewing,whethersweptorunswept,decreasesthetailcontributionto CnB ofthewing-tailconfigurationatthe“)higheranglesofattack.Fortheunsweptwing,howeve

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1