ImageVerifierCode 换一换
格式:PDF , 页数:28 ,大小:555.87KB ,
资源ID:836334      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836334.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-3554-1956 A preliminary investigation of the effects of frequency and amplitude on the rolling derivatives of an unswept-wing model oscillating in roll《频率和振幅对非扫掠机翼模型滚转.pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-3554-1956 A preliminary investigation of the effects of frequency and amplitude on the rolling derivatives of an unswept-wing model oscillating in roll《频率和振幅对非扫掠机翼模型滚转.pdf

1、.JNATIONALADVISORYCOMMITIEEFOR AERONAUTICSA PREIiUMtNARYTECHNICAL NOTE 3554LINVESTIGATION OF THE EFFECTS OF FREQUENCYAND AMPLITUDE ON THE ROLIXNG DERIVATIVES OF ANUNSWEPT-WING MODEL 0SC!ILIJM71NG IN ROLLBy Lewis R. Fisher, Jacob H. Liechtenstein,and Katherine D. WilliamsLangley Aeronautical Laborato

2、ry-.Langley va9WashingtonJanuary 1956I., .-d1L -J-.= -”- . . . . .- . . . . . . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-1P.- -.-_TECHLIBRARYKAFB,NMNMIONALADVISORYCOMMITTEE,FORAERONAUTICS lug!lll!lHl#BullHluDObbb7S.WHNICAL NOTE3554A PRELIMINAR

3、YINVESTIGATIONOF THEEFFECTSOF FREQUENCYANDAMPL13!UDEON THEROLLINGDERIVATIVESOFANUNSWETT-WINGMODELOSCILLATINGINROLLBy LewisR. Fisher,JacobandKatherineD.,SUMMARYH. Liechtenstein,WilliamsA modelwithseparablewingandtailassemblywas oscillatedinroll through a rangeof frequenciesandamplitudesof oscillation

4、foran angleof attackof0 andat onefYequencyandamplitudefortwohigheranglesof attackin orderto determinetheeffectsof theunsteadymotionon therollingstabilityderivativesof themdel anditscomponents.A variationof frequencyor amplitudeof oscillationin therangecoveredat an angleof attackof 0 hadno importsnte

5、ffecton either.theyawingmomentduetorollingor thedampinginrollforthisunswept-wingairplaneconfiguration”.The onlyappreciablevalueofyawingmomentduetorollingwas shownby thefuselage-tailcombination.Thisconfigurationexperienceda reductioninmagnitudeof thederivativeaseitherthefrequencyor theamplitudeof the

6、oscillationincreased. .Thevaluesof therolMng derivativesobtainedby oscillationwereconsistentwiththevaluesmeasuredby meansof conventionalrolling-flowtestsat an sngleof attackof 0. Forthemodelwiththewingata highangleof attack,theoscillatoryyawingmoiuentdueto rollingwas differentfromthatobtainedunderst

7、eady-stateconditions.INTRODUCTIONAs partof a continuinginvestigationof theeffectsofunsteadymotionon thelateralstabilityderivativesof airplanemodels,testsweremadein theLangleystabilitytunnelat low speedsto determinetheeffectsof freqyencyandamplitudeon theyawingmomentduetorollinnandthedsmpinginrollfor

8、an unswept-wingairplanemodel. Thesetests,whichwerepreliminaryin nature,involvedtheforcedoscillationinrollof themodelaboutitslongitudinalwindsxisthrougha rangeofI- - - -. - -. .-. - - - - - . . Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.-. . . .

9、 . - . 2 NACATN 3554frequenciesandamplitudesofmotion. Theresul% obtainedwerepri-marilyforan singleof attackof OO;however,someresultsforhigheranglesof attacksrepresented.Steady-statederivativesweremeasuredby meansof testsmadewiththemcdelstationaryinrollingflowandwiththemodelrollingsteadilyat severalr

10、otaryvelocitiesin straightflow. Thesesteadyresultsareregardedas zero-fkequencyoscillationdataandformthebasisfora comparisonof theunsteady-stateandthesteady-staterollingderivatives.Theoreticalvaluesforthe steady-staterollingderivativeswerealsousedfor comparisonwiththeexperimentaldata.Themodelusedin t

11、hesetestshada wingof aspectratio6 sadatailassenibly,eitherofwhichcouldbe separatedfromthefuselage.Testswereconductedforthefuselagealone,iPorthewing-offconfig-uration,forthetail-offconfiguration,andforthe completemcdel.The contributionof theverticaltailto thedampinginyaw of a modelof similarconfigura

12、tionmeasuredduringfreeoscillationinyaw isreportedinreference1 andduringforcedoscillationinyaw inreference2.The datasentedinthe.4SYMMLS-.arereferredto the stibiliw systemof axesandme pre-formof coefficientsof theforcesandmomentsaboutapointwhichcorrespondsto thenormallocationof thequarter-chordpointof

13、 thewingmeanaerodynamicchordof thetideltested. (Seefig.1.) The coefficientsand symbolsusedhereinaredefinedas follows:2A aspectratio, .5b Wing Spanj ft”% dm.g coefficient,*% liftcoefficient,*.Cz rolling-momentcoefficient, thisphotographshowsa typicalmotionof themodelduringoscillation.Theamplitudeof t

14、herollingmotionwas variedby adjustingthe eccentricityof the crankat theflywheel.Thefrequencyof oscillationwas variedby a speedcontrolthatregulatedthevoltageto thedrivingmotor.For thosetestsinwhichthemodelwas forcedto rollsteadily,thecrankmechanismwasreplaced.bya V-beltandpulleysystemwithonepulleyat

15、thecenterof thefwheel andtheotherat themodelsupport. (Seefig.6.) Ming thesetests,itwasnecessarytobalancethe systemaboutitsaxisofrotationby meansof the counterweightshownin figure6.In orderto eliminatetheuse of slipringsin the steady-roingtestsof themodel,the strain-gagewires(fig.6)wereextendeddown-s

16、treamabout feetwheretheyweretiedto a lengthof shockchordbeforebeingledoutsidethetestsection.Theremainingendof theshockchordwas tiedto a downstreamtunnelsupport.As the stingrevolvedandthe strain-gagewirestwisted,the shockchordstretchedto keepthetensioninthewiressmall. Thewiresweredisconnectedtheother

17、steady-statetestsinvolvedrollingtheairflowpastthe stationerymodel. In thelattermethod,momentsweremeasuredbothby the strain-gagebalancewhilethemodelwas supportedas in theoscillationtestsandby a mechanicalsix-componentwind-tunnelbalancewhilethemodelwasmountedon a single-strutsupport.The secondof these

18、is the stand-ardprocedureemployedin theLangleystabilitytunnelformeasuringtherolling-stabilityderivativesofmodelsandis describedinreference3.TestConditionsAll testswereconductedat a dynamicpressureof 24.9poundspersqparefootwhichcorrespondsto a free-streamvelocityof 145 feetpersecond(understandardcond

19、itions),a Reynoldsnuniberof442,000basedon thewingmeanaerodynamicchord,anda Machnuxriberof 0.13. Themodelwas testedat anglesof attackof Oo,4, and8by boththeoscillationandthe steady-statetestprocedures;however,becausethereductionoftheoscillographdataprovedto be an extremelylaboriousprocess,itwas deeme

20、dadvisableto restrictthe scopeof theinvestigationto thefollowingrepresentativecases:Therangeofcommonlya, deg f, Cps $.,dego o.5to 4.0 ?51 *5 to tioO, 4)0and 8 1 $5frequenciesof theoscillationtestswerechosenso thatthethereduced-frequencyparameter encompassedtherange2Vencounteredin thelateraloscillati

21、onsof airpbnes. This- . _ - - - -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.-. _ ._8 NACATN3554.-parametervariedfrom = 0.030 to = 0.243. Theactualfiequen.tiesof oscillationwere0.5,1.0,1.5,2.0,3.0,and4.0 cyclespersecond. The largeamplitudesof os

22、cillationwere chosenpurposel.ytoinsurethattheyawingmomentwouldbe ofmeasurablemagnitude.TheseamplitudeswereHo, tlOO,t15,andii?(l”.Forthetestsinwhichthemciielwasrolledat constentvelocity,the circularvelocitieswere0, tO.50,M.75, andfl.00revolutionsper= of 0, -K).030, to.046, anati.061.secondwhichcorres

23、pondto valuesof 2VForthosetestsinwhichthemodelwas stationarywhilethe.air-streauwas srted a rollipgveloci, thevaluesof pb were0.057,0.029, 0.008, 0, -o.025, -043, and -0.065 in the caseof the sting-mountedmodeland0, W.023, fo.046,andtO.063in the caseof the strut-mountedmodel.The followingmodelconfigu

24、rationswereteited: fuselage,wing,andtail(designatedFWT),fuselageandwing (designatedEW),fuselageandtail(designatedl?l),andfuselage(designatedF). .REDUCTIONOF DATA .The equationsof equilibriumofrollingandyawingmomentsforamodelmountedon a strain-gagebalanceandhavinga motionaboutitsrollaxissreandwhere L

25、 and N arethemomentsmeasuredby the strain-gagebalance.Sinceforthishermonicmotion - .-. . . - -.- . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2PNACATN 3554 9then,at thetimewhen = O,j = .Qb2 ofSimilsrly,forthedWP* inroll,2 (L)oc3p=-_tipVSb2ofd t

26、hewingitselfcontributesonlya smaLl%negativevalueto . Ihthepresenceof thewing,however,theloadingon theverticaltail.dueto rollingis effectivelyovercomebyan oppositeloadingdueto sidewashfromtherollingwingas discussedinreference4.In orderofmagnitude,valuesof Cnp obtainedl%omoscillationtestsagreeverywell

27、,withoneexception,withthe steady-statevaluesobtainedinrollingflowat an angleof attackof OO. The exceptionoccurredforthecompletemodelforwhicha smallpositive Cnp WaSmeasuredinrollingflowwhereastheoscillatoryvalueswerealsosmallbutnegative(fig.9(a). These-rolling-flowresultswereforthemodelsupportedon th

28、eoscillationstingin the samemanneras itwas fortheoscillationtests.Increasingtheangleof attackof themodelfromOO to 8 at 1 cycleper secondreducedthelargevalueof c% forthefuselageandtailby about70percent(fig.9(c). No particul= effectof angleof attackwas shown,however,on therathersmallvaluesof Cnp exhib

29、itedbytheotherconfigurations.The incrementsin p contributedby thetailbothin thepres-enceandin theabsenceof thewingare shownin figureU. togetherwithsteady-statevaluescalculatedforthetail. The tail-alonevalueofCnp was calculatedfromthedataof reference5. Thisvalueis expectedto be scmewhatlargefora tail

30、surfacebecausetheloadingsgiveninreference5 areforonesemispanof a completerollingwingand containsomeloadcarriedoverfromtheothersemispan.Thepresenceof thewingwas takenintocomiderationby usingthemethodpresentedinref-erence4 to estimatethe sidewashat thetaildueto the load. Theestimatedreductionenceof th

31、ewingisAISO shownClear,Cnp resultingfromoscild.ation.inininanthetailcontributionto C% dueto-thepres-goodagreementtiththeexperimentalresults.figure-n.,is the overallreductionto thetailincreasein eitherfrequencyor amplitudeof. . .- -. - . . . . . . .-Provided by IHSNot for ResaleNo reproduction or net

32、working permitted without license from IHS-,-,-12 NACATN 3554Dampinginroll.- Theresultsshownin figure10 indicatethatatan angleof attackof 0 thereexeno importanteffectsofunsteadymotiononthedaqing h rold-fortheunswept-wingmodeltested. Thevaluesof Clp obtainedby oscillationaxe consistentwiththoseobtain

33、edby rolllmgfluwwiththemodelsupportedon theoscillationsting. Thewingitselduced thelargestincrementof Clp. Thepresenceofthewingreducedthe contributionof.thetailto Ctp ,asit didfor%P, butthiseffectis insificant becauseof thenessof thetailcontributionto Czp.An estimateof the steady-statecontributionoft

34、o C2P msybe madeby methodssimilarto thoseforbution. Sucha calculationpredictsa valueof LCzpcompsxativesmsU-theverticsltail the C% contri-= -0.044 forthetdl in theabsenceof thewinganda valueof CClp= -0.027 forthetailin thepresenceof thez. Thesevaluesare inagreamentwiththe incrementswhichcambe obtaine

35、dfromfigure10.An increasein angleof attackfromOO to 8reducedthedampinginrollofthewingby a considerableamount(fig.1O(C). Thisreduc-tionin Czp isroughlyproportionalto the changein thewinglift-curvesiopebetweentheseangles. (Seefig.8.)On the qualityof the oscillationdata.- In orderto recordthesmaU yawin

36、gmomentsdueto rolling,itwas necessarythat the sensi-tivi of the strain-gageyawing-momentbeambe ccmparativel.yhigh.Thishighsensitivityresultedin a naturaltrequencyinyaw of theorderof 20 cyclesper secondforthe straingagewithmodelattached.Becausethemodelwas excitedby wind-tunnelturbulenceorby unsteadyv

37、ortexflowoffthemodel,theoscillographrecordsshowa tracewitha frequencyof 20 cyclesper seconddueto thesedisturbancessuperim-posedon thelowerfrequencytracedueto theforcedoscillation.(Seefig.7.) At an angleof attackof0,the superimposednoisehadanamplitudecomparableinmagnitudeto thesmptude of theoscillato

38、rymomentanditwas veryregularovera longperiodof time. Itwas notdifficult,therefore,becauseof thisregulari,to eliminatethehigh-frequas a result,the superimposednoisewas ofmuchhigherfreqpencyandofmuchsmalleramplitudestn thatforthe corre-spondingyawing-momenttiaceas sh_ti_f igure7-.Although-the-nofseaga

39、inassumedgreateramplitudesandlessuniformim at a = 8,ingeneral,theoscillatoryvaluesof Czp are consideredtobe reliableforti anglesof attack.Comparisonofresultsobtainedby differenttechniques.-A compari-sonof theoscillatoryderivatives(for f = 1 cps andthe steady-statederivativesmeasuredby twomethods(rro

40、llingmodel)is shownin figure13. In general,thesetwo steady-statetechniquesgiveapproximatelythe samevaluesof % and Clpat a= 0,withtheexceptionof a differencein C% forthemodelswiththewing. Thisdifferencemy be duein“partto differencesinsuppmt-strutinterference.Althoughthepreviousdiscussionhas shownthat

41、,for a = Oo,frequencyeffectsweresmell.,thedifferencein at a= 8 betweenthe steady-stateandtheoscillationresultsmsyindicatelargeeffectsof frequencyat thehighanglesof attack. Apreviousinvestigation(ref.6)has shownthat,forwingsforwhichpartialseparationhas occurredduringunsteadymotion,an aerodynamiclagw

42、existwhichcontributesto themomentsactingon thewing. Suchan aerodynamiclag causetherolling-stabili derivativeseitherofthewingitselfor of thetailor fuselagein thepresenceto,be markedlydifferentfromthe steady-statederivativesot attack.CONCLUSIONSAn unswept-wingmodel,whichwas tested-asa fuselageof thewi

43、ngat highanglesalone, afuselage-tail-conibifortheotherconfigurationstested,yawingmomentdueto rollingwas smalland showedno importanteffectof fre-quencyor amplitude.Thelargeyawingmomentdueto rollingof thefuselage-tailconibinationwasreducedto a smallvalueinthepresenceof thewing. Thiswing-interferenceef

44、fecton thetailcontributiontothederivativecanbe accuratelyestimatedby meansof existingsteady-statetheory.2. FYequencyor amplitudehadno noticeableeffecton themagnitudeof thedampinginrolJforthemodelor anyof its componentsat anangleof attackof0.3. The rollingderivativesofthemodelanditscomponentsmeasured

45、by theoscilllationtestsweregeneraldyconsistentat lowanglesofattackwiththederivativesmeasuredby steady-statetests. At a highangleof attackthe oscillatoryyawingmomentdueto rollingforthemodelwiththewingwas differentfromthatobtaineduudersteady-stateconditions.LangleyAeronauticalLaborat,NationalAdvisoryC

46、ommitteeforAeronautics,_ey Field,Vs.,October19,1955. _“.- .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN 3554 15.-.,a71REFERENCES-1. Bird,JohnD.,Fisher,LewisR., andHubbard,SadieM.: SomeEffectsofFYequencyon theContributionof a VerticalTailto

47、theFreeAerodynamicDsmpingof a ModelOscillatingin1953. (SersedesNACATN 2657.)2. Fisher,LewisR., andWolhart,WalterD.: Son #o = 5.(C) a = 8; o = t15.Figure7.- Sampleoscillogrtiphrecordsforthreeamglesof attack.W+ F+ Tjf=lcps.-. - .-. - - - .Provided by IHSNot for ResaleNo reproduction or networking perm

48、itted without license from IHS-,-,-24cma71a16 f = 1 Cps.Figure9.- The effectsof frequency,amplitude,andangleof attackon “theyawingmomentdueto ro12ing. RolMng-flowresultsareformodelmountedon stingsupport. - - - . . .-.- .- . . . - - -Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . - -_26 NACATN 3554zo?2-.4-.6 0 Q4 08 L2 L6 2.0 2.4 28 32 .36 40.20.2-.4-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1