ImageVerifierCode 换一换
格式:PDF , 页数:66 ,大小:1.36MB ,
资源ID:836350      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836350.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-3819-1957 Base pressure at supersonic speeds on two-dimensional airfoils and on bodies of revolution with and without fins having turbulent boundary layers《二维机翼和带有及不带有.pdf)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-3819-1957 Base pressure at supersonic speeds on two-dimensional airfoils and on bodies of revolution with and without fins having turbulent boundary layers《二维机翼和带有及不带有.pdf

1、?L. *WCA. Ttlf3E?f/ _TECHNICALBASE PRESSURE.AT SUPERSONICNOTE 3819SPEEDS ONTWO-DIMENSIONALAIRFOILSAND ON BODIES OF REVOLUTION WITH ANDWITHOUT FINSHAVING TURBULENTBOUNDARY LAYERSByEugeneS.LoveLmgleyAeronauticalLaboratoryLangleyField,Va.WashingtonJanuary1957Provided by IHSNot for ResaleNo reproduction

2、 or networking permitted without license from IHS-,-,-TECHLIBRARYKAFB,NMlM NATIONALADVISORYCOMMITTEEBASEPRESSUREATAIRFOILSANDFORAERONAUT 11111111111011bL7KLTECWCALNOTE3819SUPERSONICSPEEDSONIWO-DIMENSIONALONBODIESOFREVOLUTIONWITHANDWITHOUTFINSHAVINGTURBULENTBOUNDARYLAYERS1ByEugeneS.LoveSUMMARYAnsaaly

3、sishasbeenmadeofavailableexperimentaldatatoshowtheeffectsofmostofthevariablesthataremorepredominantindetermining. basepressureatsupersonicspeeds.Theanalysiscoversbasepressuresfortwo-dimensionalairfoilsandforbodiesofrevolutionwithandwith-outstabilizingfinsandisrestrictedtoturbulentboundarylayers.Thep

4、resentstatusofavailableexperimentalinformationissummarizedasaretheexistingmethodsforpredlctirigbasepressure.A simplesemiempiricalmethodispresentedforestimatingbasepres-swe. Fortwo-dhnsionalbases,thismethodstemsfromananalogyestablishedbetweenthebase-pressurephenomenaandthepeakpressureriseassociatedwi

5、ththeseparationoftheboundarylayer.AnanalysismadeforaxiallysymmetricflowindicatesthatthebasepressureforbodiesofrevolutionissubJecttothesameanalogy.Baseduponthemethodspresented,estimationsaremadeofsucheffectsasMachnumber,angleofattack,boattailing,finenessratio,andfiris.Theseestima-tionsgivefairpredict

6、ionsofexperimentalresults.INTRODUCTIONTheproblemofpredictingthebasepressureatsupersonicspeedshasreceivedconsiderableattentioninrecentyearsandseveral“methodshavebeenadvancedrecently(refs.1 to5),someofwhichgivemuchmoresatis-factoryresultsthantheoldermethods(refs.6 to8). TheworkofCroccoandLees(ref.l)”g

7、ivessatisfactoryqualitativepredictionsthroughouttheReynoldsnumberrangeandmayultimatelygivesatisfactoryquantita-tivevaluesiftheproblemofpredictingtheReynoldsnwnberoftransitionlSupersedesdeclassifiedNACAResearchMemorandumL53C02byEugeneS.Love,1953.-11Provided by IHSNot for ResaleNo reproduction or netw

8、orking permitted without license from IHS-,-,-2 NACATN3819inboundarylayersandfreewakesissufficientlyovercomeandifsome .reliablebasicendvalueofthebasepressurecanbeusedasa startingpointinthecalculations.ThesemiempiricalmethodofChapman(ref.2)hasprovedsatisfactoryforthepredictionofthebasepressureonboat-

9、 *tailbodiesandairfoilswhentheboundarylayerIsturbulent.Thismethod(ref.2)utilizesexperimentaldataonprofileswithoutboat-tailing.EdgarCortrightandAlbertSchroederoftheLewisFlightPropulsionLaboratoryhaveproposedamethodforestimatingthebasepressureonaboattailbodyhavinga turbulentboundarylayerthatuti-lizesa

10、nydatawhichprovidetheseparationangleatthebaseasafunctionofMachnumberaheadofthebase.Existingcomparisonsbetweenthismethodandthatofreference2 appeartoindicatethatbothmethodsgive,ingeneral,reasonableagreementwithexperimentalmeasurementsofboattaileffectsforbodiesof-revolutionandfortwo-dimensiomlair-foils

11、. ThemethodofCope(ref.4)doesnotappeartogiveassatisfac-toryapredictionasthatofChapmanand,asCopehaspointedout,theapproximationsandassumptionsinvolvedresultina firstapproximationonly. LittleisknownbythepresentauthoroftherecentmethodofGabeaudbeyondtheinformationgiveninreference3; therefore,thelimitsofit

12、sapplicabilityareunknown.Gabeauddoesappeartoconfinehiscom-parisonstoexperimentaldatafrombodiesofrevolutionwithfinsbut,sincetheequationasgiveninreference3includesnotermstocoverfineffects,thevalueofthemethodremainsinquestion.ThemethodofKurzweg(ref.)appearsinadequatesinceitgivesidenticalresultsforbotha

13、irfoilsandbodiesofrevolution.Todate,considerableexperimentalworkhasbeendevotedtoinvesti-gationsofbasepressureatsupersonicspeeds.Thereportedinvestiga- .tionsaretoonumeroustomakereferencetoallherein,butreferences9to 29, inadditiontocertainofthosepreviouslymentioned,areexamples -ofworkthathasbeendoneto

14、determinetheeffectsofvariousvariablesuponbasepressure.References2,15,16,and23reportinvestigationsinwhichtheeffectsofsupportinterferenceuponbasepressurehavebeenstudied.References2 and15includeinvestigationsoftheeffectsofdisturbancesenteringthewake(ref.2withstingsupportandref.15withoutstingsupport).A

15、nmnberofthereferencesshowthevariationofbasepressurewithReynoldsnumberata constantMachnumber.(Seerefs.2,5,9, lk, 15, 23, 27, and28, forexample.)Theseandotherreferencesshowtheeffectsforbodiesofrevolutionofsuchinfluencingvariablesasthepresenceoffins,locationoffins,jetflow,noseandbaseshapes,andboattaila

16、ngle.Reference10andpartsofreferences25and29areexamplesofstudiesdevotedtoessentiallytwo-dimensionalbasepressures.Withthisaccumulationofexperimensldataandthecom-pilationsofdatanowinexistence,particularlythosecontributedbyDeanR.Chapman,readyassessmentmaybemadeoftheeffectsofmostoftheprimaryinfluencingva

17、riablesaswellasanevaluationofanymethod .advmcedtoprecttheseeffects.However,astillbeshown,thereisstillaneedforexperimentalinformationontheeffectsofcertainvari-ables,particularlythoseassociatedwithfineffectsonbodiesof “revolution.!-l_Provided by IHSNot for ResaleNo reproduction or networking permitted

18、 without license from IHS-,-,-NACATN3819 3.,Inthepresentinvestigation,onlybodiesandwingshavingturbulentboundarylayersaheadoftheirbasesareconsidered.Thisrestrictiontoturbulentboundarylayersisnotsevereforpracticalapplicationsince,atReynoldsnumbersforfull-scaleaircraftormissiles,thelikelihoodofrealizin

19、glsminarflowovertheentirebodyorwingisremote,particu-larlysoforthebody;inaddition,thepresenceofstabilizingfinscausestransitionevenatlowReynoldsnunibers:(Seeref.15.) TheadvantageofthisrestrictionisthatitpermitseffectsofReynoldsnumbertobeignored.References2,10,12,and27,forexsmple,haveshownthat,oncea fu

20、llyturbulentboundarylayerexistsaheadofthebase,thevariationinbasepressurewithincreasingReynoldsnunberissmall.Thepurposeofthisinvestigationistomakea summaryanalysisofavailableexperimentaldata,includingsomeresultsobtainedrecentlyintheLsmgleyg-inchsupersonictunnel,toshowtheeffectsofmostofthevariablestha

21、taremorepredominantininfluencingbasepressureandtoadvance,wherepossible,simplesemiempiricalmethodsforthepredictionoftheseeffects.Thesemethods,whiletheymaynotbesignificantlyadvantageousoverormuchdifferentfrommethodsnowinexistence,arebelievedtoshowamoredirectrelationbetweenwskeandbodygeometry.Furthermo

22、re,a tiscousanalogyisestablishedbetweenthetrailingshockandthepeakpressureriseassociatedwiththesepationoftheboundarylayer.Thefirstpartofthispaperdealswithtwo-dimensionalbasepressures.Thesecondpartdealswiththebasepressureonbodiesofrevolutionwithandwithoutfins.SYM60LSangleofattackfree-stresmMachmmiberM

23、achnwnberaheadofbasestaticpressureaheadofbasedynsmicpressureaheadofbaseMachnumberalm+adoftrai15theseshocksapparentlyarisefromthetendencyoftheflowtooverexpandinitiallyasitturnsthecorner,sothata shockisrequiredtoturntheflowintheCtLrectiondeterminedbythemixingboundariesoftheso-calleddead-airregionassho

24、wninfiguren(a). Theinclinationsofthemixingboundariesandthelipshocksare,therefore,directlyrelatedand,asshowninfigure12,theirinclinationsvarywithReynoldsnumberuntilafullyturbulentboundarylayerexistsaheadofthebase. (Althoughtwo-dimensionalbasesfacili-tatetheobservationoftheseweaklipshocks,itisofinteres

25、ttonotethatlipshockshavebeenobservedintheflowaboutthebaseofabodyofrevolution.Anexampleofthisisshowninfiguren(b)fora 15cone-cylindertestedinaballisticrsngeintheLangleygasdynsmicslaboratory.Inaxiallysymmetricflowthelipshocksareseentobecurved.)Noattemptismadetoaccountforthepresenceoftheseweakshocksinth

26、eestimatesofbasepressureinthisreport.Onthebasisoftheconfigurationemployedandtheresultsshowninfigure8, an analogymaybedrawnforthebaseseparatingtwosupersonicstresmshavingdifferentMachnumbersanddifferentstaticpressuresjustaheadofthebase. (Forexample,at =2.41 and a.=20,M.= 3.40ontheuppersurfaceand1.58on

27、thelowersurface.)IftheparticularvaluesoftheMachnmbersandstaticpressuresoneithersideofabasearesuchthattheycs.nberesolvedtoessentiallythesameMachnumberand -staticpressurebysuperimposingangleofattack,thenthebasepressuremaybeestimatedbythepresentmethod.Generalremarks.-Inviewofthereasonablycloseanalogyth

28、athasbeenshowntoexistbetweentwo-dhensionalbasepressuresandthepeakpressurerisethrougha shockassociatedwiththeseparationoftheboundarylayerfromaflatplate,thereverseoftheproceduremaybeapplied;thatis,measurementsofbasepressuresmaybeacceptedasameansofestimatingthepeakpressurerisewithseparationoftheboundar

29、ylayer.Investigationofthisanalogyforlsmlnarboundarylayersandlaminarwakesmight,withtheadditionalconsiderationofReynoldsnumber,leadto,anestablishmentoftheReynoldhowever,acceptingtheideathatthepeakpressurerisedeterminesthebasepressurepermitsa qualitativesmalogytobedrawn.Figure13 presentsa sketchofthefl

30、owphenmnenaatthebaseofabodyofrevolutionforwhichthevaxiationinMachnumberonthebodysur-faceiszero.Theconvergwake(AtoB)isessentiallyconicalandmustexperiencea recompressionalongAB;whereas,fortwo-dimensional,flowtheconvergenceofthewakewouldcausenochangeinpressurefromthatcorre-spondingtothecompletedexpansi

31、onat A. Forthebodyofrevolution,therefore,thereisa decreaseinMachnumberalongAB suchthatimmedi-atelyaheadof B thelocalMachnmiberisconsiderablylessthsmwouldbethecasefora two-dimensionalbasewiththessmevalueofMachnumberat A. Exactlyat B theturningoftheflowmayb.econsideredtwo-d3mensional;consequently,thet

32、wo-dimensionalpressure-risecoefficientwouldapplyexactlyat B andthevalue.of Ml wouldbethatimmediatelyaheadof B. Itbecomesobtious,therefore,thatinordertorealizethesamevalueof Mljustaheadofthebaseofthetrailingshockfora two-dimensionalbaseandforthebaseofabodyofrevolution,eachhaving .-thesamedegreeofwake

33、convergence,thevalueoftheMachnuuiberaheadofthebase M. mustbeconsiderablygreaterforthebodyofrevolution.Fromtheforegoingreasoningandinviewofthevsriationof b with showninfigure4,thebasepressuresonbodiesofrevolutionwouldbeexpectedtobeconsiderablyhigherthanthoseontwo-dimensionalbodiesatlowandmoderatesupe

34、rsonicspeedsandequaltoorslightlylessthanthoseontwo-dimensionalbodiesathighsupersonicspeeds.Althoughexperimentalbase-pressureresultstendtoconfirmthepre-cedingqualitativeanalysis,quantitativeconfirmationthroughcalculationsbasedon Pr isdesirable;however,itwouldbenecessarytoknowthedistanceN (seefig.13).

35、beforeanyreversecalculationcouldbemadeoftheMachnumbervariationfrcmB to A.ThisdistancewouldofnecessityhavetobemeasuredfromexperimentalresultsandthelocationofthepointB mightbesubjecttoconsiderableerror.Forthisreasonandfromconsiderationoftheinherenterrorsinvolvedina reversecalculationofthistype(methodo

36、fcharacteristics),noattempthasbeenmadetoapply. thisapproach.Instead,measurementshavebeenmade,frompublishedschlierenphotographsandshadowgraphs,oftheanglee (seefig.13).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-12 l!lACATN3819betweenfree-streamdir

37、ectionandtheclearlydefinedouterboundaryof .theconvergentwake.ThemainpartofthesemeasurementswasobtainedfrcznshadowgraphsmadebytheBallisticResearchLaboratories(BRL),AberdeenProvingGround,examplesofwhichareshowninreference2. The -resultsareshownhereininfigure14.Several valuesof f3and M. fromfigure14wer

38、eutilizedinattemptstocalculatethech numbervariationalongthesurfaceofaconereplacingtheconvergentwakeinordertodeterminewhetherareasonableapproximationoftherequiredvalueof Ml couldbeobtainedatsomestationaheadofthetipofthecone.Themethodofcharacter-isticswasusedfirstinthesecalculations.Alltheresultsshowe

39、dthat,ifreliablepressuresweretobeobtainedovertherearportionofthecone,increasinglymorepointsmustbeaddedtothecharacteristicnetastheconetipisapproached.Becauseofthiscomplication,thecalcula-tionswereconfinedto M.=2.00 and e =10.33;theresultsareshowninfigure15. Thethirdrefinementtothecalculations,whichga

40、ve44pointsalongtheconesurface,gavea valueof Ml ofapproxtely1.6oattheconetipascomparedwiththecriticalvalueofabout1.58determinedfrom Pr.Itisdifficulttoestimatewhetherfurtherrefine-mentstothecharacteristiccalculationswouldlowerthecalculatedvalueof Ml muchfurther,butthefactthatthevaluethuscalculatedandt

41、hevaluedeterminedfrom Pr areofthessmeorderwouldseemtooffer,atleast,supportforthequalitativeanalogypresentedpreviously.ThelessexactmethodofsmallMsturbanceswasusedinseveral30-pointcalculationsand,excludingtherearward5 to10percentoftheconewherethepredictedvaluesbegintoincreaserapidlytowardinfinitepress

42、ureatthetip,theseresultsalsogavevalues of Ml ofthesameorderasthosedeterminedfromPr. Furthermore,theresultsofrefer-ence15wouldappeartoindicatethatthetheoreticallypredictedposi-tivepressuresovertherearofaparabolicconvergentafterbodyarereallzedexperimentally.RecentlyjmeasurementshavebeenmadeintheLangle

43、y9-inchsuper-sonictunneloftherecompressionalongthesurfaceofa 10conicalafterbodyprecededbya cylindricalsectionandwitbinthewakebehindthebaseofa cylindricalsemibodyofrevolutionmountedona.boundary-layer-removalplate.Theresultsforthe10conicalafterbodyarepre-sentedinfigure16andshowclearlythattherecompress

44、ionalongtheconesurfacereachedpositivevaluesandisoftheorderofmagnitudepredictedtheoretically.Figure17presentsthewskepressuresmeasuredonthesurfaceoftheboundary-layerplateforwhichorificeswerelocatedalonganextensionofthebodycenterlineandalonga 10oraypassingthroughtheshoulderofthebase.Althoughthewakepres

45、suresthusmeasuredaresubjecttotheeffectsofthepresenceoftheplate.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN3819 13surface,theyarebelievedtorepresenta reasonablyaccuratepictureofthetruevariationofthewskepressureswiththepossibleexceptionofreg

46、ionsveryclosetothebase.At M = 1.93 a directcomparisonmaybemadebetweentheresultsoffigures16and17since,asshowninfigure14,thevalueof e at M = 1.93 isverycloseto10. Sucha cmnparisonshowsthattherecompressionalongthewakeboundaryisverysimilartothatontheconicalafterbodyandthattherecompressiontendstobeslight

47、lygreaterforthewakeboundary;thus,thecalculatedrecompressionat M.=2.00 presentedpreviouslywouldappeartobea conservativeestimate.Theseresultscoupledwiththeprecedinganalysistendtosub-stantiatetheideathatthepeakpressureriseassociatedwiththesepa-rationoftheboundarylayeristhepredominantfactorindetermimlmg

48、thebasepressureinaxiallysymmetricaswellastwd-dimensionalflow.me resultsoffigure17 appeartobeofadditionalthattheresultsatallMachnumbersshowthattheoftenofconstantpressurewithintheconvergentwakebehindationisnotpermissible.Simplifledrelationtowakeconvergence.-Theuppersignificanceinusedasstionbodyofrevol

49、u-curveoffig-ure14,throughaMachnumberofabout4,isfairedthrouthemeasuredexperimentalvaluesofwakeconvergence13presentedasa functionoftheMachnumberaheadofthebase.Thedoublesymbolfora givenmeasurementrepresentsthelimitsofmeasurementof “f3frombothsidesofthewake.Allexperimentalpointsrepresentthecaseofzeroboat-tailing,andnomeasurementsweremadeforbodieshatingfinenessratioslessthan5.Ifthecylindricalafterbodywasnotsufficientlylongtoal

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1