ImageVerifierCode 换一换
格式:PDF , 页数:53 ,大小:1.52MB ,
资源ID:836383      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836383.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-4390-1958 Effects of frequency and amplitude on the yawing derivatives of triangular swept and unswept wings and of a triangular-wing-fuselage combination with and wityawi.pdf)为本站会员(unhappyhay135)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-4390-1958 Effects of frequency and amplitude on the yawing derivatives of triangular swept and unswept wings and of a triangular-wing-fuselage combination with and wityawi.pdf

1、t,generally,atthehighanglesofattacktheoscillatoryvalueswerecon-siderablylargerthanthesteady-statevalues,especiallyforlowampli-tudesandlowfrequenciesofoscillation.Fortheunsweptwingtherewasgenerallylittledifferencebetweenthesteady-statevaluesandtheoscillatoryvaluesofthedamping-in-yawderivativeandthede

2、rivativeofrollingmomentduetoyam inthelowangle-of-attackrange;athigheranglesofattack,thesteady-statevaluesusuallyweregreaterthantheoscillatoryvalues.Althoughforthecompletewing-fuselage-tailmodelthevsriationoftheoscillatorydamping-in-yawderivativeswithangleofattackwassimilargenerallytothesteady-statev

3、ariation,someoscillatoryvalueswereobtainedwhichwerefourtofivetimesgreaterthanthesteady-statevaluesthroughouttheangle-of-attackrange.Theeffectsofamplitudeontheyawingderivatives:,althoughsmellatlowanglesofattack,becamegreateratthehighersinglesofattack;andthegreatesteffectsoccurredatlowvaluesofamplitud

4、eandfrequency.Thealgebraicsummationofthecomponentderivativesgaveresultswhichwere,ingeneral,infairagreementwiththederivativesobtainedinthecom-binedform.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATN4390INTRODUCTIONCurrentairplanesofrelativel

5、yhighdensityhavebroughtintoconsiderationtheimportanceofsomefactorsassociatedwiththedynmnicstabilityofaircraftwhichheretoforewereconsiderednegligible.Amongthe,factorssretheeffectsoffrequencyandsmplitudeonstabilityderivativesandthepossibilitythataccelerationderivativesmaybeofsuchmagnitudeastobeimporta

6、ntforcertainairplaneconfigurations.Somedatatohelpassesstheimportanceofthesefactorshavealreadybeenobtainedexperimentallybyuseofoscillationtechniquesfromwhichcm.ibinationderivativeswereobtainedandarepresented,forexsmple,inreferences1to3. Someinvestigationsusinga somewhatmorecomplicatedtechniquehaveres

7、ultedindirectmeasurementofthesideslip-accelerationderivatives(ref.4)andhavealsoresultedintheevaluationofthederiv-ativesassociatedwithsideslipvelocityduringa sinusoidalsidesl.iposcillation. Theinvestigationyresentedinreference5wasmaiietodeterminethestabilityderivativesassociatedwithyawingvelocityanda

8、ccelera-tionforonefrequencyandamplitudeofoscillation.Thepresentinves-tigationwasundertakentoextendtheresultsofreference5tootherfrequenciesandamplitudesofoscillation.Oscillatoryderivativeswereobtainedinthepresentinvestigationfortriangular,swept,andunsweptwings.Inaddition,somedatawereobtainedfora tria

9、ngular-wing-fuselageconibinationwithandwithoutatriangulartail.Theoscillationdataarecomparedwithdataobtainedfromsteady-stateyawingtestsmadeinthe6-by6-footcurved-flowtestsectionoftheLangleystabilitytunnel.Inaddition,theresultsofthepresentinvestigationandofadditionaltestssimilartothosepresentedinrefere

10、nce4 srecomparedbothindividuallyandasanalgebraicsumwiththecombinationderivativesdeterminedinreference6.SYMBOLSThedatapresentedarereferredtothestabilitysystemofaxeswiththeoriginlocatedatthequarter-chordofthewingmeanaerody-namicchord.Thepositivedirectionsofforces,moments,andangulardisplacementsareshow

11、ninfigure1. Thecoefficientsandsymbolssredefinedasfollows:Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN4390 3JiLftliftcoefficient,Icos$+Rcos27cft. ForsmalJangulardisplacementsofthemodel,y= + R cos2xft;hence,thevelocityofthemodeltowardthedrive

12、flywheelis = +M?R sti% hence,theaerodynamicmomentsB, C, D,and Ecouldbeobtainedreadilyandthederivativescouldbedeterminedbyuseoftheequationspreviouslypresented._RESULTSANDDISCUSSIONInfigures6 and7 areshowntheliftdata.plottedagainstandeofattackforthethreewingssndwing-fuselage-tailco.uibination,respec-t

13、ively.Thesedatahavebeenpresentedanddiscussedinreferences4and7,respectively,andarenotdiscussedhereinbutareincludedyrimarilytorelatethelifttoangleofattack.Thedatameasuredduringoscillationtestsarepresentedinfig-ures8 to17. Infigures18to21thewing-aloneresultsofthepresentinvestigationarecomparedwithdatao

14、btainedfromsidesl-ippingtestssimilsxtothosepresentedinreference4.Inaddition,thederivatives Marecomps.redasanalgebraicsumwiththecombinationderivativesdeter-minedinreference6. wProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACATN4390 u.Dmng inYaw C?r

15、,awing s alone.-Thevariationofthedsxping-in-yawcharacteristicswithangleofattackforthewingsaloneisgiveninfigures8,9,and10fordifferentamplitudesanddifferentvaluesofreduced-frequencyparam-eter. Forthe60triangularwing(fig.8)andforthe45sweptwing(fig.9),thevaluesof C4,LD generallyaresmallinthelowangle-of-

16、attackrangebutincreaseastheangleofattackisincreased.T!hisisespeciallytrueforthedataobtainedat # =0.04.Atthelargeanglesofattacktheoscillatoryvaluesof C% alsoareconsider-ablylargerthanthesteady-statevaluesof C%? whichshowamuchsmallervariationwithsingleofattack.Thesteady-statevaluesofc% obtainedfromref

17、erence7 areshownbythedashed-linecurveineachfigure.Fortheunsweptwingatthelowvaluesofsmplitudeandreduced-frequencyparsmeter,thevsriationof C4,U withangleofb attackisgenerallyratherirregular(fig.10);whereasforthelsrgevaluesofamplitudeandreduced-frequencyparsmeterthevariationofC%,m withangleofattackissm

18、all. fact,thevariationof C. 4,Uw withangleofattackissmallerthanthevsriationofthesteady-statevalues,andatthehighanglesofattacktheoscillatoryvaluesarepositiveorlessnegativethanthesteady-statevalues.Figures11,12,and13arepresentedinordertoshowmoreclesrl.ythevariationwithamplitudeofthevaluesof C%,0 forth

19、ethreewings. Forallthreewingsthesefiguresshowthatatlowanglesofattackthereisonlya smalleffectofamplitudeon C%,0 forallvaluesofthereduced-frequencyparsmetershown.Atthe-higheranglesofattacktheeffectofamplitudeonthevaluesof C4,U islarger,thelargestchangesoccurringinthelow-fiplituderangeandatthelowvalues

20、ofthereduced-frequencyparsmeter.wing -fuselage confipTuL-ation.-ThevariationofthedsmpinginyawC%r,uwithsingleofattackforthetriangular-wing-fuselageconfigura-tionisshowninfigure14fordifferentamplitudesanddifferentvaluesofthereduced-frequencypsrameter.Ingeneral,thevaluesof C%,lm.becomemorenegative(incr

21、easeddamping)withincreaseofangleofattackProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-12 NACAm 4390forall testvaluesof ;however,theincreasewithangleofattack2Vismuchlessforthelargervaluesof . Thesteady-statevaluesofc+ donotvaryappreciablywithangleof

22、attackandsremuchlessnegatiVeatthehighanglesofattackthantheoscillatoryvaluestheclosestagreementoccurringatthehighervaluesof .Thevariationsofthe C4,U datawithamplitudeforthewing-fuselageconfigurationaresh infigure1.5fordifferentvaluesofmb. Becauseoflackofsufficientdata,thecurvesarefairedonlymthroughth

23、etestpointsfor =0.08.Theeffectofsmplitudeisgenerallysmallinthelowangle-of-attackrangebutismuchgreateratthehighanglesofattackwherethedampingincreaseswithamplitude.Itshouldbepointedout,however,thattheeffectsofamplitudeonCnr,umaybedifferentforotherfrequenciesofoscillation.wing-fuselage-tailcotiiguratio

24、n.-Forthecompletewing-fuselage-tailconfiguration,thevariationofc%,0 withangleofattackis.showninfigure16fordifferentfrequenciesandamplitudesofoscilla-tion.Alsoincludedinthisfigureisthevariationwithangleofattackofthesteady-statevaluesof wc%?“ Ingeneral,theoscillatoryvaluesf cnr,areconsiderablymorenega

25、tivethanthesteady-statevalues.Withfewexceptionsthevaluesoftheoscillatoryderivativesareatleasttwicethesteady-statevaluesand,insomecases,theoscillatoryvaluessreasmuchasfourandfivetimesaslargeasthesteady-statevalues.Thelargestdifferencesoccurusuallyforlowvaluesofsmi-tudeandfrequency.Aswasthecaseforthew

26、ing-fuselageconfiguration,insufficientdatawereobtainedtoshowthevariationof C% withaaitudeforYtherangeoffrequenciesintheinvestigation.erefore,infigure17a curvewasfairedonlythroughthedataobtainedat =0.08.Thefaireddatagenerallyshowedthat C% becomeslessnegative(reduced.dsmping)withanincreaseinsmplituhow

27、ever,thedifferencebetweenthesteady-statevaluesandtheoscillatoryvaluesof CZr ismuchlessatthehighervaluesofamplitudeandfrequency.Fortheunsweptwingatthehigheranglesofattack,hbwever,thesteady-statevaluesaregreaterthantheoscillatoryvaluesof %r forthehighervaluesofamplitudeand .mbor10wtiesf m athighangles

28、ofattack,valuesof Cz aref)ulobtainedwhich,dependingontheamplitudeofoscillation,aresomettiesa71 greaterandsometimeslessthanthesteady-statevalues.Thevariationwithamplitudeoftherollingmomentduetoyawingofthethreewingsisshowninfies 11,12,and13. Generally,thereisonlya comparativelysmalleffectofsmplitudeon

29、 cl atlowrjaaaglesofattack.Theeffectsofsmplitudesregreateratthehigheranglesofattack,andgenerallygreaterchangesin cr,u takeplacein thelowerrangeofamplitudes.wing-fuselageandwing-fuselage-tailconfigurations.-ThevariationofthederivativeCZ withangleofattackforthetriangularwimgr,ufuselageconfiguration-wi

30、thandwithouta tail(figs.14and16,respec-tively)isverysimilartothatobtainedwiththetriangularwingalone(fig.8)sinceCZ ismainlyduetothewing.Therelationbetweenr,uthesteady-statevaluesandtheoscillatoryvaluesforthecompletewing-fuselage-tailconfigurationandthewing-fuselageconfigurationisalsosimilartothatobta

31、inedforthewingalone. Forboththewing-fuselageandwing-fuselage-tailconfigurationsthereappearstobea decreasein c% withanincreaseinamplitude* ra)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 NACATN4390 v(figs.15and17),andthegreatestchangesappesmtota

32、keplaceatthelowervaluesofamplitude;asbeforeitshouldbepointedoutthatinsuf- -ficientdatahavebeenobtainedtomakea generalstatementforallvaluesoffrequency.AccelerationDerivativesC%,U and Cz.rju.)Wingsalone.-TheaccelerationderivativesC%,U and cl.rjmplottedagainstsugleofattackforthethreewingstestedareprese

33、ntedinfigures8,9,and10fordifferentfrequenciesandamplitudesofoscillation.Ingeneral,thederivatives=e significantonlyatthelowerfrequenciesandamplitudesofoscillqion.wing-fuselageandwirig-fuselage-tailconfigyrations.-Thevariationwithangleofattackoftheaccelerationderivativesforthewing-fuselageandwing-fuse

34、lage-tailconfigurationsareshowninfQures14and16respectively.Ingeneral,thepositiveorlessnegative,andpositiveormorenegativewithangleofattackofabout16.appearstodependonsmplitude-uesf C%,(Dtendtobecomemorethevaluesof Cl. tendtobecomelessr)uanincreaseinangleofattackuptoanAthigheranesofattackthevariation a

35、ndisratherirregular.Atlowangles wofattackandlowvaluesof theeffectofamplitudeon C2V %,0 smuchgreaterforthecompleteconfigurationthanitisforthewing-fuselageconfiguration. .Inordertoillustratethevariationoftheaccelerationderivativeswithamplitudeatseveralanglesofattack,figures15and17werepre-paredwhichsho

36、wmoreclesr?l.ytheeffectoflitude ntionedThereissomescatterofthedatapointsfortheVariOUSfrequenciesfromthe _ ._curvefairedfor mb_0.08;however,therewerenotenoughdatapointsm toestablishobtainedatothervaluesof 2Vattheatherfrequencies.ComparisonofYawingandAccelerationdefiniteamplitudeeffectsDerivativesWith

37、CombinedDerivativesforWingsAloneForpurposesofCOmPWiSwiththemeasedc*tion derivat.,a)theaccelerationtermscontributeasmuchormoretother,umeasuredcotiinationderivativesasthe C% and Clr,uportionsforallthreewingsthroughouttheaugle-of-a.ttabrange.BecauseofthefactthattheaccelerationtermsC!n+,U d %,0 aremulti

38、pliedbygenerally,atthehighanglesofatacktheoscillatoryvalueswereconsiderablyl=gerthanthesteady-statevalues.Fortheunswept.wingtherewasgenerallylittledifferencebetweenthesteady-statevaluesandtheoscillatoryvaluesofthedsmping-in-yawderivativeand%Provided by IHSNot for ResaleNo reproduction or networking

39、permitted without license from IHS-,-,-16 NACATN4390.thederivativeofrollingmomentduetoyawinginthelowangle-of-attackrange;athigheranglesofattack,thesteady-statevaluesusua14were .-greaterthantheoscillatoryvalues.2. Althoughthevariationofthedsmping-in-yawderivativewithangleofattackwassimilsrgenerallyto

40、thesteady-statevariation,forthetriangulw-whg-fuselagecombination-withverticaltail,someoscil-latoryvalueswereobtainedwhichwerefourtofivetimesgreatertthesteady-statevaluesthroughouttheangle-of-attackrange. 3.Theeffectsofs.mplitudeontheyawingderivativesweresmallatlowanglesofattackforthewingsalone.Theef

41、fectsofsmplitudeandfrequencyweregreateratthehigheranglesofattack,andthel2.316002.1842.5652 ( , 4Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.I t(b) Drive flywlmeland lirisageB.Figure 3.- Concluded.L-94582.1Provided by IHSNot for ResaleNo reproduc

42、tion or networking permitted without license from IHS-,-,-24 NACATN4390+.TL$60/5.59 Affowttng pointCvcubr km! edge3L/8 A1; ,= Yfivekdporiron;1 4.28L ,LA /8+-f36TriangularwingAS?Ctmt10. . . . . . . . . . . . . . . 2.3fLeiwkqedgesweepongId-. . . . . . . WDfW%fongie,c 6076 07640481P 16202426.&# Oftimdq

43、(a) =o.04.16 O.?.ao+6K.?24/sEJ o*./6-4048” i?162Z -24A#c/mak,c”(b) = 0.08.Figure8.- Stability derivativesfor the 60 triangularting meaauredmduring oscillation.n)mProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-, r16 16-/6 -16/6 16J-O $ 0-16 -16(c) *. O.12. (d) =o.16.igure 8.- conthmed.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1