ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:560.74KB ,
资源ID:836414      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836414.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-84-1922 New data on the laws of fluid resistance《流体阻力法则的新数据》.pdf)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-84-1922 New data on the laws of fluid resistance《流体阻力法则的新数据》.pdf

1、#.tTEGINICAL IWDH3. .No. 84.-NEW DATA OH THE IJ$WS(N?FLUID RESISTANCE.%(G. IHeselsbergez.Taken frou%hysikalischeZeitsch=ift,l2921, vol. 22.Haroh, 1922. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.T(JNI

2、CALNOENo, 84,NEW DATA ON THE LAVS 03FLUIDByC. Jieselsberger.-WMle very noteworthy Tesults aweREfiISTANOE.* .been obtained, esFeciailytn reoent years, iththe aid of the theory Of the rctcnless.fluid, this is the case in a mud smaller degree for the resultsOf the tkeorybased on ELfluid tih internal f?

3、irtion or viPcos-ity, The fuids with which we actually have to do always possess.some viscosity, which is the very reason for the res?.santeen-counteredby a oodymovingin a fluid. ,%ent!d.s ZeSi Elt3nGf? Ordrag has been reduoed to a.mintium by Stremlj.nulg the body,theeffect of the viscosity becomes

4、so small that the actual flmrverynearly agrees with that calculated,on the basi of the theory of :the frictionless or non-viscous fluid.* Thie is not ths oase$however, with shapes which aause a great resistance, since the vis”cosity of the fluid ierephys a decisive role. Thus far all at-tempts at th

5、e quantitative determination of the drag, on t.ebais,of the theory of viscGus f“luids,with the exception of a few sec-,ial oases, have met uith but slight suooess. For this reason,whenever a more .acou-r.ateknowlefi.geof the drag is desiable, it.* Fmm !lFhytiikalischeZeitgchrift,:l1921, Vol. 22, p,

6、321-328.* l?hrmam, Theorie und experimentelleUntersuchungyenan Ballon-.ViwisllenjDissart,J G for example, in the ease of aerofwil, the greacesprojected area. The dimensionless coefficient c is terw.sdthecoefficientof drag. For a long time the opinioa held, maiy onJ the stzength of l?ewtonsconception

7、 of the reistanceof the air, that for a given fluid this coefficientof drag is independentof the velocity and of the absolute size of the body and my ELC-oodinglybe regarded as a oonstantwhose value depends only onthe Seometricai.shape of the body. It was thought possible, frcnthe knowledge of the d

8、rag coefficient obtainedfor a singleve-looity of a given body by r,eansof the above drag formula), todetermine the drag for any other size of the body and for anyother velooity, geometrloal similarityof shape being assuued.,Provided by IHSNot for ResaleNo reproduction or networking permitted without

9、 license from IHS-,-,-a71-3-.In reality, as we shall see, the relations are not nearly sosimple.Ioreaccurate experiments on the mutual influence of theforces which produce the drag, have shown that the coefficient ofdrag remains constant only for geometrically similar flows. Thelatter do not however

10、 necessarily follow from geometric similazity of the bodies experimentedupon. The decisive conditions.for the production of geometrically similar flows were first de-% termined by O, Reynolds. If any desired ltnear dimension of tLebody (whichmust however be identical in the cases compared) isdesigna

11、ted by d and the kinetic viscosity by V = 11p(inwhich is the coefficient of viscosity), the two flows are ge-m= R is the sameometrically simiiar only when the quotient in both cases. The coefficient R is dimensionless and is calledReynolds number from its discovere.Consequently, it oamot be eected t

12、hat the coefficient ofdrag c (mhioh characterizesthe resistance of a body) will re-Smain unchanged in the transition to another Reynolds number, for.example, by dhangingthe velocity or thefact, a dependence of the coefficient ofaetei X# is observed for most bodies.size of the body. Indrag on Reynold

13、s para-The kind of ckange isdetermined by the geonetrioal shape of the body. The aboveexpression is usually employed for the drag, even in the cases wherec is not a constant. The least changes in the coefficient ofdrag occur for bodies with sharp edges, when the latter are perpen-dicular to the dtre

14、ction of flow. Thus, for example, according to .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-*y revious on-4?-sharp-edged.lgw,the coefficient of drag zexains constant for a tide rangef Reynolds num;ersand ha a value of about c = 1.1. On thecontary

15、, bodies with convex upper surfaces aay ,ggvevery differ-ent results. With Reynolds numbers (whichare small in compazisufiwith unity) the drag increases dizectly as the velocity, as wasfirs% demonstratedby Stokes for the case of falling syheres.a71a71 This flow is characterizedby the fact that here

16、the inertia oon-ithour syrnkok,)c = R (2.C02 - lzlrt).in which R represents the Reynolds number with reference to thediameter of the cylinder. This formula is derived from an approx- ;imation theory and is only applicable for values of R which azesmall with reference to unity. The values correspondi

17、ngtO th.iS* A detailed description of this arrangement,which has hitherto.been principally employed for testing aerofoils in a tvo-d-men-sional flow is given in lZeitschriftffirT?iugtechnikund l.%tor-titschiffaart,rf1919, p,95, and inlErge-ouisseder Aerodynanis-.then Ver8uchsarstalt,lrfirst report,

18、1921, pp. 54-53, pu-oishedby R. Oldenbowg,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-7-.fomiula ars zepzesentedby a dash.line in Fig. 1. It is evidentZh.atthe contlnla%ionof the curve passing through the experineri-tal points connects well witht

19、he oourse of the calculated ourve,so that the regim. in whiah the experlaenis can m longer be mr-ried out, is bridged over, with R (U23, them is a very not-iceable downward deviation, confirmedhowever from another side*From R = 15,GMl to R = 180,000, the quadratic law of drag isapproximately satisfi

20、edby the value of c = 1.2.b With R N 2OG,000, a very rapid fall of the c!kagcoefficient(from 1=2 to 0.3) takes place. A.vezy similar behavior had been .Previously observed in determining the resistance of spkeres* Iand afterwards also for many other bodies with convex upper sur-faces. The Reynolds n

21、unher correspondingto this transitionalregion is usually designated as the llcritioalReynolds numbe?.*!The decrease of tks Jrag ooef.ficientis 30 great in the ?egion,that even the ahsclute value of the drag for a cylinder ofgivendiameter, contzary tg all previous experienoe, decreases with in-.oreas

22、ing veiocity. The quantitative relations are shown by Fig.2,in which the drag in kg per meter length of a oylinderof 30 cm* E. F. Relf, ltDiscussionof the Results of Measurements of theResistance of Wires, with some Additional Tests on the Resistanceof Wices of Small Diemetez,tTechnical Report of Ad

23、visory Cormittee for Aeronautics, 1923-1914,p.47.* G, Eiffel, l)Surla Resistance des %heres clansItair en r;ouve-H.ent11Co further, Capt. G. Oons-%anzi,pllAl,cuneesper:enze di idroinamica,1!Rendiconti delle espez-ienze e degli studi nello stab, di esp. e constr. aeron. del genie,# Vol. 11, IJo.4,Rom

24、e, 1912; L. Frandil, Der LuftwiderstandvonKugeln Nachri C. Wieselsberger, ffirFlugteclmikund Motorluftschiffahzt,1S14, p,140,ZeitschriftProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-8-*(iiametezis plotted against the velocity of tke air.:surface. I

25、t is seen that in the lattercritical number, which is here about Rcotinuous line was ob-aith a roughthe dashline, ,case, after passing te= 70,000 a rapid inceaseof the drag coefficientagain takes plac, so that even for”thisb region the quadratic law of resigtce is yTAOean obeyed with aconstant coeff

26、icientof drag. It will be an essential task.for ex-Frifin%l aezodynauics to find theexplanationof these peculiar phenomena,In concluding,thanks to Professorthis work.the wti,tierwishes to eress his ;ieartiestPrandtl for the active support he has 4oi_J.1. . -1 i +.:.,/.l-,; l,iy!+20 .,._ -, . ,_. i .

27、 - . cj p ./i ,L:mb,4 or lal - .4;. d. l- -1- - - - -b -l6. -“-”-” 1-“1 14. L.-. -c M- - k -t3.- “- +,2. i.-.- . +_ -1.5 - -:-,L.-._.-.“1.2- 1,0 1 i-.,.,_,_._- _ -,._, t-. .- -l- :jt l, t .- .- .-.”, .-.I ,.;.r- -,:;:ii:;:;1I =QK)d=$ t6)-e-= “ H I - ,- .-_. ._: - I-A- . -1-. 1-1 i-. .l”-”-”-“- “-l”-

28、” - - - “ “”1- “- - -”-,+ Oz,P.i!:. :.;_l;= . . ,04.1 .-.-J .“ -1j-L - “yi.j.i.1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.D(kti).3C2.Fig,“,. “,. ., 11 / .i s-(”- “=-_ -_.- : 0 :-.-”+- ;,R -.-.,b-1 IIi-3 -q- -: I I t 1-J - -.- . . .i“. -Fig.?.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1