ImageVerifierCode 换一换
格式:PDF , 页数:42 ,大小:964.30KB ,
资源ID:836418      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836418.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TN-925-1944 A least-squares procedure for the solution of the lifting-line integral equation《升力线积分方程解法的最小平方法》.pdf)为本站会员(terrorscript155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TN-925-1944 A least-squares procedure for the solution of the lifting-line integral equation《升力线积分方程解法的最小平方法》.pdf

1、R - -b- ti- ? =- - .- . _ - .E_ * - _.-8 *-L- -. - - . .a71 a71. TECHNICAL NOTESs NATIONAL ADVISORY COMMITTEE FOR AERONAUT ICS-b.No. 925: / “- “”- -.I. - . . . . .- .- . . .A LEASTSQUARES PROCqURE FOR THE SOLUT IOI?OFTHE LIFl!IHG-L IHE IbT7!EGRALEQUAT IONBy Francis B. Hildebrandliassachusetts Instit

2、pte of TechnologyJCLASSIFIEDMCUMENTThisdocumentcontainaelaanifiedinformationaffectingtheNationalBefenmeoftheUnitedStatenwithinthemeaning. ofthe EspionageAct,USC50:31and32. Itstranmis6ionortherevelationof itsoontentaA in anymannertoan unauthorized*. .*rsonisprohibitedbylaw.Infor-.mationsoclassifiedma

3、ybeimrt-i? edonlyto personsinthemiliteryand navalServicesoftheu-nitd* States,appropriatecivilianoffi-cersandemployeesof theFederalGovernmentwhohavea legitimateinteresttherein,md to UnitedStatescitizensof knownIqaltiyand discretionwho of neceseitymustbeinformed thereof.-. “.WashingtonFebruary 1?344.

4、.-. -,.,- - .-.-_- ._ .- -.-. - .-r-.- .-.-.- r. .-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-m.8 .“:l!llllmminllllll“-:”y:;y:;:.:”-,:,:,:,31 i760fi4338223 -: .- ,- ._- :-. ._.r.- . -.- .-.NATIONAL ABV ISORY COMM.?TTEE,FOR .J?3ROMAUTICS .-.-.-.

5、-,.?.-A LEAS TSQUARXS PROCEDURE “FOR TEE SOLU!3?01703TH23 LIF!IIN(+L IiW INTEGRLiL EQTJATION -.By Francis BIIildebrand - .-SIJMMfi”lshould be of a form readily adaptableto the approxmation of the function T, the characteristic behavior of which usually is known.In the present procedure an approximat

6、ion to Y(y)is assumed in the form. . Wlth the exception of the3+ fi ) An Yan (+7)nfirst term, the approxi-mating functions ae conventional ones employed isewhere. The cooffici.ent of 33, which is of the formrequired by equation (16), was originally chosen for usein cases when a(y) has a discontinuou

7、s first derivativeat tho root (e.g, in the case of a symmetrically linearangle of attack), since the contribution of this term tothe integral representing the induced angle of attack,has a discontinuous derivative at the root (Y= O), whilothe function itself has a continuous derivative at thispoint

8、, The function was, however, retained for use inthe more general case since itaproximating functions, being$!w th functions 1-y2figure l.)With the approximation ofline equation (5) becomescomplements the otherintermediate in behaviorand yadlya . (See aequation (17) the liftin*?.?.rProvided by IHSNot

9、 for ResaleNo reproduction or networking permitted without license from IHS-,-,-,. NACA Technical Note No”. .925 11+!320(+)+= ”+aa+A4”4+A”- - -,. . .,. . . . . . .-.s.(+(y ) Yj .T ” .TT -1 “ay” .Yn ,.- . . .,. .is .pi.ecewise constant in .theint,erval.Y.- .- .,. “1!lr(y)dy= -,y (48)b ;-,-.i “. -“- .

10、l+. r;+. , . .”=. - ,-. -. -5.sneeded. . _, ,.-,., ;, . ,t,.?q.-.:,-. .-.-,- - . -:-.:-1-2,.:;As an exam”ple, stippose.that the iiileron deflectionof a wtng is such thatrO -l+1and” it follows from equation (20) that . _ . .-AIIangle Of attack o“f-1-rad,ian-fro-m O “to-.489”ahd0 from0.489, to. 1 .s-

11、precried, sb ,hat, in th6 notat”io of”the. .examplo of the p.reced.”ingsectibu . , I _ _ .,. . ,. a = 0.489 (55) -!I!hoequation to be solved is thenTo(y) + 1 . df = cL*(y)C*(Y) =“ -1 dq yq(56)Wherea71Fe(y) = P(y) l?(y) (57).and P(y) and a*(y)(52),are defined in equations (50) andT“: -.,:Provided by

12、IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26 NAOA Technical Note No. 925The func.%ions C*(Y)? P(y) and a*(y) are tabulated.at the nine points considered in table 3,If the operations indicated in equation (19) (whero a is replaced by a*) are carried out, eq

13、uation (21)takes the form “B A. AZ Ad A-.1919b 1,19190 -,09596 -,02399 -.01199-,07040 1,25021 -.07042 -,02800 -.01323.10621 1.29847 .00920 .03391 -,01759.31748 1,33285 .14545 -.02293 -.02469.54852 1,34659 .33665 -.03619 -, oaQQ4.77976 1.32734 .57247 .18323 ,03444,97608 1s25020 .82318 .45254 .223161.

14、05476 1.05256 1.00377 ,82257 ,644961.02073 .80166 1.08951 1.25742 1,389351.852691.947841.940881.766571.09D23.49026.0527-.S?629-.32527.(58;The coefficients of the final set of linear aquations,obtained by taking the dot product of the auxillary matrixdefined in equation (25) into both sides of equati

15、on (58), .are then found, .B. A. Aa A4 Aa5.45683 7.35230 4.66690 3.11236 2,3.15147.35230 18.51243 5,71837 3.14707 2.127954.66690 5,71837 4.lli95 2+92894 2,262823*11236 3.14707 2.92894 2.42110 2.050022*31514 2=12795 2.26282 2.05002 1.,85Z66 I1.7626115.54154=.62091-.51871-,60723,(59)and the solution o

16、f the corresponding set of equationg ia33 = 4.20498 A. = 1.40506 Aa = -9.94467 -In table 4 and figure 4 the auxiliary lift function .F(y)i determined by the equation .F(y) = P(y) - Ye(y) .is presented in compalson with a solution given by Pearson(referenoe 4), Z%iS solution was obtained by using a t

17、en-term series of the type given in equation (17a) (omittingrProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-I?ACA Technical Eote. No. 925 27.the first term) and determining the parameters by amethod given by Miss Lotz (reference 3). l?or furthercomp

18、arison there fS inolqded in.figure 4 a SOluti On o _tained by the present least-squares procedure with anapproximation of the type of equation (17), that is,without. using the additional approximating function .-P(y). Whilethe Pearson soution agrees closely wifhthe present solution over a large part

19、 of the span, itappears that even with a ten-term”approximat icn, thecorrect behavior of the lfift curve cannot be satisfactorily approximated near the end -of the flap except by theuse of a term similar to the function P. The valuesof the angle of attack corresponding to the present sou-tion and to

20、 the Pearson solution are compared with theprescribed values of a in table 5 and figure 5. “rHODITIED PROCEDURE TOE WINGS WITH DISCXMTINUOUSCHORD PARIATIONSuppose that the angle of attack a(y) is continuousand that the chord cy) is continuous except for finitejumps at the points y= an. Theri the fun

21、”ct$on (Yy/c*(Y)has corresponding discontinuities of magnitude - !( an)whereYn1-C*(an+)Hence. since a is. . . . .1 1=O*(an+) c*(an) t61)c*(an) C*(an+)C*(an)continuous, theequation (5) must be continuous andf$ dT dq._=dq yqlefthand side ofthe functionmust have discontinuities of magnitude +YnY(an) at

22、 thepoints y = an. , . -.,If the function l?(y) is written in the formI(y) = Fl(y) Q(Y) (62) “-.,Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-.,.28whore .NACA Technical Note No: 925.-.(63) .%,.:.nd n (Y) is defined by equation (39) , the ccnstants

23、. u can ho determined so that thele.f.$-hand side of eua-tion (5.).is cotitinuous and consequently the function(Y) has a finite derivativ inside the “interval y l.l?or, accordiug to equation (40), if equation (62) is introducad into equation (5) the lefthand 6ide. of”th.re-sulting equation has, at e

24、ach point y = am a dificontinui-tyof magnitude.It follows tha”t thedis continuitf”es will disappear if theconstants IIn satisfy the equationswhere .il, m=nL(65),.-.The constants Kn are-thus .deter,ioined.,from quation(64) as linear combinations of-the values of Fl(y) atthe points of:discotii.inuity,

25、 “a71Qquat ion (6) can now be rf.tten in the fora .r “1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-N-AGA TeChil”ikal-k.t“eNo. -9= “ ;,. “B.,Since the function lizy) has a finite derivative insidethe interval : /yl cl; an .“approxirn&*iO-nto (Y) c

26、an be.assumed In the” fa71rm gi.v”bn “by equat ion (17) and the termin brackets in equation (66) becomes a known llnear combi-nation of the parameters 3 aha A*a. If this term isevaliiatb at the points yk with the help of equation(40) and if the. st-,of coefficiets f B and Aan inthe resultant eressio

27、ns is mitten as a matrix, thematrix equation replacing equation (21.) iS obtain?d bysubtracting this matrix from. the left-hand side of .equation (19)* The east-squares procedure can then %e a”plied as before.As an example, suppose. that the cherd variation of asymmetrical wing has dis continuities

28、of equal magnitudeand opposite sign at the points y = +a .and writeY= c*( a+) - c*( a-) = _ c*(-a+) - C,*(-a) (6?)c*(-a+) c*(-a-)C*( a+) C*( a-)Then equat ion (6 becomesUSC), since I(y) ,is an even function of y and since17a(a) = 17_a(-a) = ora(-a) =-l_a(ti) = 2a ldg a!“(69)equation (64) becomes -so that J.-. _ -.1 -“ ,. ”-”Provided by IHS Not for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1