ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:1,008.72KB ,
资源ID:836422      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836422.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TR-1020-1951 Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures《在高平面和流体温度下光滑管.pdf)为本站会员(cleanass300)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TR-1020-1951 Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures《在高平面和流体温度下光滑管.pdf

1、REPORT 1020MEASUREMENTS OF AVERAGE HEAT-TRANSFER AND FRICTION COEFFICIENTSAn iniwtigationa880ciated pressureFOR SUBSONIC FLOW OF AIR IN SMOOTH TUBES AT HIGHSURFACE AND FLUID TEMPERATURES 1By LEROY V. HUMBLE,WARRENH. LOWDEWIIX. and LELnm C. DESMOXSUMMARYoj forced-emuvctiim heat transfer anddrop8 was

2、conducted with. air flom”nathrough emothtubefOT-an imi-all range of eurjace ta few re8ult8are includedfor cooling of the air. The mer-allrange of aurfaee-to-airtemperaiurt?rai% wa8fio?n 046 to 3.6.Correlationof the measuredawrage heat-tranejerandfrictioncoej%iente with heat addi$hn by conzxmtionatlm

3、ethods whereinthe physical prapertie8 of the air were t?wduutedat the aoerageair temperature rewlted in considerable decrea8e8in both tlw.Vu88el#number and thefrtktian coej%ieti at mn.etantReynoldinumber in the turbulent re”on, as the ratio of eqface npera-ture to air temperature wa8 increoxed. The

4、eect of 8urfa4e-to-air temperature ratio wag eliminated by ewduating thephysical properties of air, includ,.-.-.evaluated athe ti temperature Tf. The daa of figure 15 (a) .-are replotted in this manner in figure 15 (b). The trendswith T,/To are ebi.nated for ReynoMs numbers above20,000 and the data

5、can be represented with reasonableaccuracy by the Ez belhnouthentmmx; Inlet-air temp?mture, S35R.Effect of Iength-diameter ratio and hdet-air tempera-ture,-Friction data. obtained with heat addition to the airfor length-diameter ratios of 30 and 120 and for idebairtempmaturea from 535 to 1460 R arc

6、shown in figure 16 (b).The data of figure 16 (b), which are for a belhnouthentrance, fall above the h“6rmfm line, whereas the belllnout,lldata in figure 15 (b), which correspond to a length-diameterratio of 60, fall on the line, ATOparticular significance can beat t.achml to these differences, howev

7、er, and it is fdt that t-hedata for the range of length-diamotm ratio and inlet-airtemperature considered can be represented with sufficientaccuracy by equation (19).COMMITTEE FOR AERONAUTICS,t , r , r r I r1 I I+-# Entronce TP/Tb :)o Long opprooch 53 -1750 1.O-2.3R Rqh t-orqleedge 535-/960 lUk.7.Of

8、1 1 t 1“ “ /f length-dlamdcrratio, 13Jinlet-ah tamwature, S35R.(b) Efket of kngthdiameter ret!o and Ink-t4r temperature wfth heat 8ddItIon, Inconcl(a) Effeet ofheatexfraetkm.hwm%itube;lerrgth-dbimctor mtlo, WFmuBr ltl.-VarlatIon of modLlledhaU.frfetkm merncknt with modblcd Reynohls number,Effect of

9、heat extraction, -Friction coefficimts obtuinwsimultaneously with thv data of figure 11 for hctit ust ractionfrom the air are shown in figurr 16 (c). Dttta for no h(altransfer arc included. Tlw coordinates and th refermcrIinc are the same as in figures 15 (b) to 16 (b). hc data POT1be rcprcscmtcd wi

10、th reasonable accuracy by thr rvfcrencc linrfor turbulent flow.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-SUMMARY OF IMWJL!I!SThe results of this investigation of heat transfer andassociated pressure drops conducted with air flowing throughsmoot

11、h tubes for a range of surface-to-air temperature ratiohorn 0.46 to 3.5, surface temperature bm 535 to 3050 R,inlet-air temperature horn 535 to 1500 R, Reynolds num-ber up to 500,000, exit Mach number up to 1.0, length-diameter ratio from 30 to 120, and for three entrsnce con-figurations may be summ

12、arized as follows:1. onventional methods of correlating average heat-h-ansfer coefficients, wherein specific -heat, viscosity, andthermal conductivity are evaluated at the average airtemperature, resulted in a considerable and progressiveseparation of the data with increed surface-to-air tempera-tur

13、e ratio for heat addition to the air. Evaluation of thephysical properties at the ti or surface temperature, insteadof the bulk temperature, aggravated the sepmation.Z. Satisfactory correlation of heating data obtained withinlet-air temperatures near 535 R was obtained for the rangeof surface temper

14、ature considered when the Reynolds numberwas modified by substituting the product of air density evalu-ated at the surface tempwature and velocit y evahmte,d at theaverage total air temperature for the conventiomd mass flowper unit cross-sectional area, and the properties of the airwere evaluated at

15、- the average surface temperature.3. orrelation of the heating data obtained at inlet-airtemperatures above 535 R by the modified method resuhedin a decrease in Nusselt number for an increase in averageair temperature, -which was eliminated by the assumptionthat the t,hermil conductivity of air vari

16、es as the square rootof temperature and by the evacuation of the physical prop-,ert.ies of air including density at a temperature midwaybetween air and surface temperatures instead of at thesurface temperature.4. TIM the assumption that thermal conductivity variesas the square root of temperature, d

17、ata obtained for cooIingof t-he air indicated that the effect of surface-to-air temper-ature ratio was the sane as for heat addition, so thah bothheat and” cooling data can be represented by the sameequation.5. The use of diflerent entrmces to the test section (that is,a long-approach; a right_ngle-

18、edge, or a bellmouth entmmce)had negligible effect on average heat-tiansfer coticimts, atIeast for Iength-diameter ratios of 60 or greater.6. Variation in tube Iength-ckneter ratio had a rektivelysmall effect on average heat-trader coefficients, which wassatisfactorily accounted for by including a p

19、arameter forlength-diameter ratio in the correlation equation.7. Friction coefficients for no heat transfer, calculatedfrom a dynamic pressure based on an average air density,were in good agreement with those obtained by other inves-tigators. The cmrespond friction coefficients obtainedwith heat add

20、ition to the air showed a considerable effect- ofsurface-to-ak tempemture ratio for the ReynoIds numbers inthe turbulent region.8. MI the friction data cmdd be represented with reason- “-able accuracy by the Ktirmhu-Mlmradse reIat.ion for incom-preseibIe turbulent flow by usiq a friction coefficient

21、 cal-. _culated from a dynamic pressure based on a density evalu-ated at the fi temperature and the modified ReynoIds _number in which the density and viscosity were evaluated at .-a temperature midway between the air and surface tern- -peiaturw.LEWIS FLIGHT PROPUMION LABOMTOHY . hrATIOXL fhmcsorm C

22、O-WE FOB AEBoxT.4umcscLEvEkm, OHIO, ecernber S1, 1960.-1.2.3.4.5.6.7.8.9.10.11.12.13.REFERENCESh-usselt, Wilhelm: Der Elniluss der Gastemperat ur auf den lt%rmeiibergang im Rohr. Techn. Mechan. u. Thermodynamic,BcLI, Nr. 8, Aug. 1930, S. 277290.MoAns, YiiUiamH.: Heat !lkansmicsson. McGraw-HUl Book -

23、Co., blC., 2d cd., 1942.Humble, Leroy V., Lovidermillr, arren H., sad Grele, likon: -Heat Transfer from High-Temperature Surfaces to Fluids. .-IPreliminary Investigation with Air in Inconel Tube withRounded Entrance, inside Diameter of 0.4 In and lkngth of _24 Inches. XACA RM E7L31, 1948.LowdermiIk,

24、 =en H., and Grele, MUton D.: Heat Transfer -from High-Temperature Surfaces to F1uick 11-Correlation ofHeat-Tramfer and Friction Data for Air Flowing in InconeI .=Tube with Rounded Entrance. NACA RM E8L03, 1949.Lewder Warren H., and Grele, Milton D.: Influence of Tube-Entrance Configuration on Avera

25、ge Heat-Transfer Coefficients -and Friction Faotors fr Air FIoviing in an Inconel Tube.NACA RM E50EX+ 1950.IXamo% LeIand G., and Sams, EIdon W.: Correlation of Forced- “Convection HeaGTransfer Data for Air FIowing in SmoothPlatinum Tube viith Long-Approach Entrance at High Surfaceand Inlet-Air Tempe

26、ratuw. NACA RM E50H23, 1950.Triius, Iyronl and Boelter, L. M. K.: An Investigation of Air-craft Heaters. II-properties of Gases. NACA ARR, Oct.1942.BoeIter, L- M. K., tmd Sharp, W. H.: An Instigation of AircraftHeaters. XXXI-Wasurement of Thermal (%nduct.ivity of-Air and of Ezhaust Gases Between 50

27、and 900 F. NACATX 1912, 1949.Keenan, Joseph H., and Ksye, Joseph: Thermodynamic Properties of _Air. John WiIey & Sons, Inc., 1945.Grtieber, H., .und Erk, S.: Die Grundgesetze der R%ermeileber- -g- Jfius Springer (BerIin), 1933.Bernardo, Everett, and Eian, CarroIJ S.: Heat-Transfr Tests of “” “Aqueou

28、s Ethylene Glycol Solutions in an ElectricaIIy HeatedTube. ,ACA R E57, 1945.Deiasler, Robert G.: haIyticaI Investigation of Turbulent J?IOWinSmooth Tubes with Heat Transfer with Variable FIuid Proper-ties for PrandtI Number of 1. N.*CA TN 2242, 1950.Choletta, Albert: Heat Transfer-Local and Av&rt&e Coefficients _”for Air FIowing Inside Tubas. Chem. Eng. Prog., VOLM, no. 1,Jan. 1948, pp. 81-88.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1