ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:307.03KB ,
资源ID:836459      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836459.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA NACA-TR-1284-1956 Theory of wing-body drag at supersonic speeds《在超音速下机翼机身阻力的理论》.pdf)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA NACA-TR-1284-1956 Theory of wing-body drag at supersonic speeds《在超音速下机翼机身阻力的理论》.pdf

1、REPORT 1284.THEORY OF WING-BODY DRAG AT SUPERSOMC SPEEDS*By ROBERT T. JONESSUMMARYTLe relation of Whitcomb8 “area rule” to the lirwarformulu-sfor wave drag at sligy supersonic speeds is discussed. Byadopting an approxhnui.ereluiwn between the source strengthand the geometry of a wing-body combinatio

2、n, tlw wuvednzgtlwory is ezprwwd in lam involviqg the areas im!.erceptidbyoblique planes or Mach planes. The remdtingformulas areclucked by comparison with the drag m.euwrenwm%obtained inwind-tunnel mperim and in ezperinwntswithfalling modelsin free air. I%ML?y) a theory for determining mung-body8ha

3、pes of minimum drag ai XTA2=2A1:52If one of the higher coefficients contribute to the base areaor volume, but they invariably contribute to the drag.The rules for obtaining a low wave drag now reduce tothe rule thrA each of the equivalent bodies obtained by theoblique projections should be as smooth

4、 and slender aspoesible, the “smoothness” again being related to an absenceof higher harmonics in the serk expression for S (X). Thusin the case of given length and volume the series shouldcontain only the term Az sin 2+ (see fig. 3). It should benoted thnt in this theory, the equivalent bodies of r

5、evolutiondo not have a physical signiiknce. The concept is simplyrm aid in visualizing the magnitude of the drag of the com-plete system.430875-57+0hS(x) =Asin2 +(%acs - Hoock body)FIGuRE 3.Optimum area distribution for given length and volume.To check the agreement between these theoretical formula

6、sfor the wave drag and experimental values, we have com-pared our calculations with the results of tests made bydropping models from a high altitude. This comparisonwas made by George H. Hoklaway of Ames Laboratory, whosupplied the accompanying illustration (fig. 4). In some ofthese cases it was fou

7、nd necessary to retain more than 20terms of the Fourier series in order to obtain a convergentexpression for the drag.Considering the variety of the shapes represented here, theagreement is certainly as good as we ought to expect fromour linear simplifications. The agreement is naturally betterin th

8、ose interesting cases in which the drag is small. Theory- Experiment:,p, ,+”:N .9 1.0 1.1 1.2/-.17$II/_Ed./ 1.01.1 1.244FIQUEn4.Comparison of theoq with results of Ames Laboratorydrop te3t9.Figure 5 shows an analysis of one of Whitcombs experi-ments. The linear theory, of course, shows the transonic

9、drag rise simply as a step at M= 1.0. We may aTect sucha variation to be approached more closely as the thicknessvanishes. To represent actual values here a nonliieartheory would be needed. For many purposes it will be suili-cient to estimate roughly the width of the transonic zone byconsiderations

10、such as those given in reference 9. In thepresent case it will be noted that agreement with the lineartheory is reached at lMach numbers above about 1.08, andthe linear theory clearly shows the effect of the modification.For further theoretical studies of wing-body drag, shapeshave been selected whi

11、ch are especially simple analytically,namely, the Sears-Haack body and biconves wings of ellipticProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-_.+. . . .760 REPORT 1284NATIONAL ADVISORY COMMITTEE FOR AERONAU.ITCSplan form, having nspect ratios of 2

12、.54 and 0.635. Figure 6shows the effect of wing proportions on the variationof wave drng with Mach number,” both with and without theTJhitcomb modification. In each case the modi6caon hasthe effect of reducing the wave drag to that of the bodyalone at M= 1.0. In the case of the low-aspect-ratio wing

13、this drng reduction remains effective over a considerablemnge of higher Mach numbem. With the higher aspectratio, however, the drag increases sharply at higher speeds,so that at M= 1.6 the modification nearly doubles the wavedrag.The rapid increase of drag in the case of the high-aspectiratio wing i

14、s, of come, the result of the relatively abruptcurvatures introduced into the fuselage lines by the cutout.Such abrupt cutouts are necesmxily associated with wingshaving small fore and aft dimensions, that is, unswept wingsof high aspect ratio.These considerations led to the problem of determining a

15、fuselage shape for such wings that is better adapted to thehigher Mach numbers. The first step in this direction is,obviously, simply to lengthen the region of the cutout-thusn,voiding the rapid increase of drag with Mach number. Theproblem of actually determiningg the best shape for the fuse-lage c

16、utout at any specfied Mach number has been under-MFIGURE5.Comparison of Whitcombs experiments with theory.04, +,. Unmodified/-/ ,A40dified-y. _ _ _-1.4 .MFmmm 6.Effect of Whitcomb modification on calculated wave drag.+.A SF-%,/,Tmces of- Mach plone;1i4i9 rSw= .5Wsinp-,.,.kvs a2J-( )a (A5)3121 +;: fw

17、l+vwhere S is the plan area of the wing.By mdcing use of the reverd theorem for drag we maycompute the wave drag of any body from the fictitiouspressure field obtained by superimposing the perturbationvelocities for forward and reversed motion (refs. 12 and 13).This process leads to some interesting

18、 relations for the shapesselected. Thus in the case of the Seam-Haack body it maybe shown that the combined pressure distribution consistsof a uniform gradient of pressure over the whole interior Rof its “characteristic envelope” defined by the Mach conefrom the nose together with the reversed Mach

19、cone fromthe tail. (See fig. 11.)By thinking of the characteristic region R as a region ofuniform horizontal buoyancy, and of the body b in terms of acertain volume, v,we see that the drag is simply the product(A6)The existence of a constant pressure gradient makes t,hccomputation of interference dr

20、ag particularly simple for suchshapes, provided the interfering body lies mtely withinthe characteristic region R. Thus the additional drag of anairfoil a placed within the double cone of the fuselage will begiven byDab=vaVb(A7)Now, by the mutual drag theorem (ref. 13) we haveDab=DW (As)or, “the dra

21、g of the fuselage caused by the presence of thewing is equal to the drag of the wing caused by the presonccof the fuselage.” In this way we obtain the general formulaD(a+ b)=Dt,t,+ 2Db.+D. (A9).(b)(a) Body of revolution.(b) Elliptio wing.FIQUBE1l.Characteriatio envelopes.7(32Provided by IHSNot for R

22、esaleNo reproduction or networking permitted without license from IHS-,-,-TREORY OF WRTG-BODY DRAG A? SUPERSONIC SPEEDS 763and for the special shapes selected:“a+b=D”(l+23+D(AIo)The effect of an indentation or cutout in the fuselage mayI)o calculated by introducing a second “body,” c, shorterthan th

23、e fuselage, and haicing a negative volume equal to thevolume subtracted by the indentation. In order to simplifythe situation as much as possible it will be assumed that thewing lies entirely within the characteristic region of theindentation, and furthermore that the latter may be repre-sented by a

24、 “negative” Sears-Haack body with volume equalto that of the wing.seors Hood body;Negotwe volume Wingc-.,.,D(O+C)=DaO+2 Negative votume; UC=-%D(o+c)= DOa-DwSeers-Hoock bOdY,/ - ,.-b ,”A+/ ,., / / DtO+b+C)=Da.+Dbb-Dcc / /FIrJUEE12.Simplified caloufation of interference drag.The calculation of drag in

25、 this case is illustrated in figure12, l?or the airfoil and cutout we havell(a+c)=ll=+211u+lla )but, SiUC13,Da,= D. ./D(a+c)=DmD. J(All)hTow, the combination (a+c) maybe placed inside the charac-teristic region of the body b without interference, sinceva+v=O. Hence,D(a+b+c)=Du+DbbD& (Al)This formula

26、 yields the minimum drag for the shapes selectedunder the assumption that VNCis fixed. In this case thedrag saving is equal to the drag of the indentation alone.The negative S-Haack body is not the optimum shapeof the indentation c for the elliptic wing, as shown by theresult of Heaslet and Lomnx qu

27、oted earlier (ref. 10). Again,how-ever, m the case of the optimum shape for c, our previousequation holds. However, the calculation of D., is morecomplex in this case and its value is somewhat greater.REFERENCES1. WMtcomb, Richard T.: A study of the Zero-Lift Drag Rfse Char-acteristicsof lVing-Body

28、OtonbinationsNear the Speedof Sound.hTACA RM L52H08, 1952.2. Hayes, iV. D.: Linearized Supersonic Flow. North AmerioanAviation, Inc., Rep. No. AL-222, June 1947, pp. 94-95.3. Ward, G. N.: Supemcmic l?low Past Slender Pointed Bodies.Quart. Jour. Meoh. and Appl. Math., vol. II, pt. 1, 1949.4. Graham,

29、E. TV.: Pressure and Drag on Smooth Slender Bodies inLinearized Flow. Douglas Airoraft Co., Rep. SM-13417, 1949.5. Heaslet, Max. A., I-omax, Harvard, and Spreiter,John R.: Linear-ized CompressibleF1OWTheory for Sonic Flight Speeds. N7ACAReP. 956, 1950.6. de IUrnutn, TL: The Problem of Resistance iu

30、CompressibleFluids. Estratto dagli Atil del V Convegno dells FondazfoneAlemandro Volt% 1935, Rome, Reale ccadeia dItalia, 1936.7. Seam, IV. R.: On Projectiles of Minimwn lVave Drag. Quart.Appl. Math., VOLIV, no. 4, Jan. 1947.8. Jones, Robert T.: Theoretical Determination of the MinimumDrag of Airfoi

31、ls at SupersonicSpeeds. Jour. Aero. Sci., vol. 19,no. 12, Dee. 1952.9. Busemann, A.: Application of Transonic Similarity. NACA TN26S7, 1952.10. Loma.x, Harvard, and Heaslet, Max. A: A Special Method forFinding Body Distortions That Reduce the wave Drag of Wigand Body Combinations at Supereonio Speed

32、s. hTAC.kRep.1282, 1056.11. Fern, Antonio: Application of the Method of CharacteristicstoSupersonicRotational Flow. NACA Rep. S41, 1946.12. Munk, Max M.: The Reversal Theorem of Linearized SupersonicAirfoil Theory. Jour. AppL Phy., vol. 21, no. 2, Feb. 1950,PP. 169-161.13. Jones, Robert T.: The Minimum Drag of Thin Vlings in Fnction-less F1ow. Jour. Aero. Sci., VOL18, no. 2, Feb. 1951,pp. 75-81.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1