ImageVerifierCode 换一换
格式:PDF , 页数:46 ,大小:753.86KB ,
资源ID:836631      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836631.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA-CR-135069-1976 Heat pipe materials compatibility《热管材料的兼容性》.pdf)为本站会员(proposalcash356)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA-CR-135069-1976 Heat pipe materials compatibility《热管材料的兼容性》.pdf

1、NASA CR-135069TRW 26148-6004-RU-00HEAT PIPEMATERIALSCOMPATIBILITYJ. E. Eninger,G. L. Fleischman,and E. E. LuedkepreparedforNationalAeronauticsand Space AdministrationLewis ResearchCenterCleveland,Ohio 44135ContractNAS 3-19128kNASA-C_-135069) HEAT PIPE MATERIALS N77-12182COMPATIBILITY Final Report (T

2、RW SystemsGr.oup) 46 p HC _.04/MF A01 CSCL 11F Unclas_3/26 56395January 1976% .jONILSPACE_ARK IIEDONDO BEACH.CALIFORNIA 90178i I1977005239Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-I r l )ti26148-6004-RU-00CTABLEOF CONTENTS SECTION PAGEmmm,_,ABS

3、TRACT ivl.O INTRODUCTION I26148-6004-RU-00t 2.2 PRETESTANALYSISiTo minimizetheeffectof variationsinmaterialcompositionon thegas-generationrate,allsimilarpartsweremanufacturedfromtubeor bar .-.stockof thesameheatnumberandallsimilarwicksfromthesamespoolofwire. All ammoniawas fromthesamecontainerandwas

4、certifiedat 99.998percentpurity(minimum).Pre-testanalyseswerecompletedon thefabricationmaterialsselectedforthisprogram. Photomicrographsof polishedandetchedspecimensweretakenwith an opticalmicroscopeat magnificationsup to 500Xandcomparedwithhandbookmicrostructures.A lotof selected304stainless-steelt

5、ubingwas eliminatedaftermetallurgicalexaminationrevealedthetubingwasnot seamless. Samplesof thealuminumandstainless-steelwerealsoexaminedwitha scanningelectronmicroscopeatmagnificationsup toIO,O00Xto aid in theinterpretationof theopticalmicrographs.All,w_terialscomparedfavorablywith handbookmicrostr

6、uctures.Inaddition,samplesof thematerialsusedin fabricationwere subjectto chemicalanalysis,whichconfirmedthatthematerialsallconformedto handbookspecifications.Analysisof theammoniabyan independentlaboratoryshowedthatintheliquidstateallcontaminants(H2,H20,N2,02,A, C02)were lessthan10 ppm,whichisthe l

7、imitof detectionfortheanalysis. Inthegaseousstate,1.9ppmof hydrogenandO.lppmof nitrogenweredetected. Therestof thecontaminantswerebelowthelimitof detection,which,forthegaseousstate,is 10 ppmforwaterandcarbondioxideandO.lppmforoxygenandargon.2.3 FABRICATION,PROCESS_NDFILLThefabricationandprocessingof

8、 theheatpipesaredescribedin themanufacturingflowchartsand theprocessingspecificationsin theAppendix.ThecleaningprocedurePR2-28-I(summarizedin Table2.2)is a seriesofultrasonlcsolventrinses. Thiswas TRWsstandardheatpipecleaningprocedureat thetlmetheheatpipeswere fabricated.i “8-1977005239-011Provided

9、by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-r r!?26148-6004-RU-00S,_hcequently, a chemical cleaning procedure (CRP7-12 for stainless steel and CRP/-IO for albminum, in the appendix) was prepared as recommendedin 6forevalumtionin thisprogram. On TRW IR ,LI

10、 iPR2-28-IJ US-FILTEREDSOLVENTS. PR13-6-1ULTRASOtlICCLE_NIN FREONTF,HINIHUMOF 15 MINUTES., DRY iN VACUUMOVENAT 212+_FORM!;I.!UMOF 5 MIrIUTEStCULTRSOIiICCL,.ANINACETOIIE,MINIMUMOF 15 MINUTESDRY IN VACUU4UVE;i;T212+-?OeFIFORMItlIHUMOF 5 HilUTESii i i i,i_ MINIMUMOFlS MIt!.UJESIll I IFORMIIIIMUMOF 5 RI

11、NUTES: T _ 1i ii JJ L =: STOREINSUITABLECONTAINERIITable 2.2. AssemblyCleantng Procedure7, -11 - , , J1977005239-014Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-EI= I=_= _ o o o o_ -12-1977005239-015Provided by IHSNot for ResaleNo reproduction or

12、networking permitted without license from IHS-,-,-iI2.4 TESTING_ Exceptwhenthetemperatureprofilesaremeasuredat lowtemperatures,theheatpipesareruncontinuouslyat theirrespectiveoperatingtemperature(seeTables2.1and2.3). Periodicallythe heatinputto theheaterblocks_j“Fted t(maintaintherequiredtemperature

13、.As noncondensablegasis evolvedduringoperationof a heatpipe,it iscarriedto thecondenserendcausinga blockage. Thequantityof noncondensablegas iscalculatedfromthetemperatureprofileof thegas-blockedregion.The profileismeasuredwiththeheatpipeoperatingin a -40Cenvironment,whichis providedby a freezer. By

14、 loweringthevaportemperature,andhenceitspressure,thenoncondensablegasexpandsto filla largervolume,andthusit resultsin a largertemperatureprofile. Thisis illustratedin Figure2-4,wheretheGASPIPEIIcomputerprogramwasusedto generatetwotemperatureprofilesforthesameamountof gas (l.OX lO“7 Ib-moles),butdiff

15、erentoperatingtemperatures.Forcalculationof thequantityof _ds,thecondenserregionisdividedinto N intervals,andthetemperatureat thecenterof the ithintervalisdenoted Ti. Thenumberof moles n of noncondensablegas isgivenby the idealgas lawasNi=lwhere V is thevolumeof eachintervalavailableforgasandvaporan

16、dR is theuniversalgasconstant. Thepartialpressureof gas, Pgi is thediferencebetweenthetotalpressuregivenby thevaporpressurePva of ammoniain theadiabaticsectionand thepartialpressure Pviof vaporin the ith interval. A computerprograms usedto calculatethequantityof gasdirectlyfromthewall-temperaturemea

17、surements.ThemeasuredtemperatureprofilesandcalculatedgasareshowninFigure2-5and2-6fortheparticularheatpipeS/N25,whichis allalumlnumand isoperatedat 80C. Thisdatais typicalIn thatthe initialT gas-generatlonret_ Isrelativelyhigh,andAftera monthit levelsout.t-13-1977005239-016Provided by IHSNot for Resa

18、leNo reproduction or networking permitted without license from IHS-,-,-I, ( ! +_,“ 1 I-,L+-I oi (Lt .+-f,- .r-_C_ _ q.l.- Otl OJ “ (“),S. _ . c- _ 0E .,- _ _ _ 0n_ _ l _ U 4J, c) S.- _ _ _ C_r- 1 _ 1-r- O c“ c- O “_“OI_, n 0 0 u o oo0 0 _ _ 0 n 0 _ I- _/_I- _o o O o o DC_ CD cD D cD o cD cD o CD o_,

19、-_ ,_i _ IU I O_ (“O 0“3, ,-.- I_ OOC CO I_ O l.A“): r_ ,- _ O_ 1.13, ,-.“ ,-,-. N oJ _ ,-o,im ,o u:; oJ ,.- ,J + ,.-Ico ,- e.,L _. _._ _O Q O C2 O: OC_ CD D CD _ D 0 C_ CD 0 CDo_o_ +_ ,-.- ,- ,- ,- ,.-. ,-“I ,- ,- i,- ,- o x _ +* _ _ -_. ,._ _ .I _1._ ,.-t,_ d t_ ,.- c_. ,:l.c,i ,- ,- _ c_ c,) ,_ +

20、c,-)i ,“) ,.,o u:)+ LI, I.- (D. _:= IO _ 8 _,._ CD _D CD O C_ + CD O _0 0 0 _1.) O0 CO _ CO ,.- _ CO + CO O0 CO.s _ o. cO oo_ oO oO co O co ooI!+ +,+ -,.+.,- . - _- _ t- t“ t“ E-i-, i,.,- i,- .i,- .r-“ +i“-“ -i-“_. _.,- 8 oi _ o o o o or=. ., , _ ._ o ol o o _ o o o,_ _=- I E .0 O 0 CD _P- CD _DE _.

21、 m_ I “P“ _ I .,-, t._ 03r _ C_+- I.-._L I _ _ I I I I I I I I i +_“_ OP“ 0_I_)-14,-1977005239-017Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-O-15-1977005239-018Provided by IHSNot for ResaleNo reproduction or networking permitted without license

22、from IHS-,-,-26148-6004-RU-00I I I I I I I I I i _.m,-.-?1977005239-019Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-!Iir26148-6004-RU-00An overallgasgenerationrateof 5.8x lO“lOIbm/day wascalculatedby a least-squaresfitof a straightlineto thedataof

23、 Figure2-6past3u days. Thedataforall of theheatpipesare summarizedin Table2.4.Detaileddataforeachpipeat eachmeasurementintervalis presentedinTableA-l in theAppendix.k.5 POST-TESTANALYSISPost-testanalyseswereperformedon oneof each typeheatpipetested: AI/SSwick (S/N8),Al/Alwick (S/N27),and SS/SSwick (

24、S/N39).HeatpipeS/N12wasalsoanalyzedto determinethesourceof a leakwhichcausedthepipeto failin test.Massspectrometrygasanalyseswereperformedon ammoniasamplesfromheatpipesS/N8 and S/N27 to determinethenoncondensablegasorgasesgeneratedduringtesting. Valveswereattachedto thetwopipesto alloweasy removalof

25、 thegassamples. Thiswas doneby placingthefllltubesina gloveboxfilledwithhelium,andthenchillingtheheatpipesin liquidnitrogento 77K. Thefilltubeswere cutoffwithatubingcutterandvalvesattached. Thetotaltimeforattachingeachvalvewas approximatelyoneminute.Gasandliquidsamplestakenfrompipes8 and27 wereanaly

26、zedbyan independenttestinglaboratory(datasheetin Appendix).The resultsshowthathydrogen,as expected,is thenoncondensablegasand thatallotherimpuritiesarebelowlO ppmexceptnitrogen. The nitrogenwasapparentlyintroducedintotheheatpipesduringthe valveinstallation.Allfourheatpipeswere subsequentlyemptiedof

27、ammonia,opened,andvisuallyinspectedfor internalsurfacedamage. Openingwasdoneby cuttingoff theendcaps,removingthewicks,andcuttingthepipesaxiallyintotwosections. The cutsweremadeon a bandsaw. The inter-nalsurfacesof theheatpipeswere visuallyinspectedundera microscope.-17-W _ 1977005239-020Provided by

28、IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-!26148-6004-RU-00Theonlyheatpipewithanysignificantchangeto theinternalsurfacewas S/N8 (AI/SSwick),wherecorrosionandpittingoccur“redtheentirelengthof theheatpipe. Damagewas aboutequalin allsectionsof the: heatpipe.

29、A solidwhiteprecipitate,probablyAl OH,wasdepositedinvariousspotsintheevaporator,adiabatic,andcondensersections.HeatpipeS/N27, (Al/Alwick)andheatpipe,S/N39, (SS/Z_wick)hadverylittlepittingor corrosion,andoveralltheinternalsurfacelookedveryclean. HeatpipeS/N12was foundto be leakingfromacircumferential

30、crackapproximatelyImmlongat theadiabaticend of theevaporator.-18-1977005239-021Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-i !(3.0 DATAANALYSIS3.1 THEEFFECTOF OPERATINGTEMPERATUREON GASGENERATIONWehadexpected,basedon previousstudieswithnickel/wat

31、er4andstainless-steel/methanol5heatpipes,thatthegasgenerationwou|dbestronglyandpositivelycorrelatedwithoperatingtemperature.From oTable2.4 we seethat thisis notnecessarilythecase. Forthethreesetsofaluminum-walledheatpipeswith stainless-steelwicksthatwere; operatedat 40C(S/N4-6),80C (S/N7-9),andlOOC(

32、S/NI0-2),thetrendis exactlyopposite. At theendof thetestperiodtheyallhavegeneratedapproximatelythe sameamountof gas;however,thegas-generationratewas lowestfor thelOOCoperatingtemperatureandhighestfor40C.Theall-aluminumand all-stainlesssteelheatpipes,on theotherhand,didhavetheirlowestgasgenerationrat

33、eat 40C (S/N22-24andS/N31-33);however,in bothcasesthe80Cpipes(S/N25-27andS/N34-36)generatedgasata h_gherratethanthelOOCpipes(S/N28-30andS/N 37-39). Thegasgenerationintheall-stainless-steelpipeswasgenerallyso low,however,itwasat thedetectionlimitand,therefore_differencesintheratesfortheall-stainless-

34、steelpipesare notsignificant.Theinconsistencyof thecorrelationbetweengas-generationratesandtemperaturesuggeststhattwoopposingprocessesareoccurring.Oneclearlyis thechemicalreactionthatgeneratesthegas,whichis certaintobe positivelycorrelatedwith temperature.Thesecondis passivationof themetalsurfaceswi

35、tha filmof corrosionproducts. Evidentlypassivationcanpro:eedmoreeffectivelyor to a greaterextentat higheroperatingtemperaturesandthusexplainsthelowergenerationratesat|OOCthanat 80C (alsolowerratesat 80Cthan40Cforthealuminum/stainless-steelheat pipes).-19-i I1977005239-022Provided by IHSNot for Resal

36、eNo reproduction or networking permitted without license from IHS-,-,-! I26148-6004-RU-003.2 THEEFFECTOF THEPRESENCEOF WATERMoreunexpectedresultswere foundin thedatafromthoseheatpipesusedto studytheeffectof thepresenceof water. HeatpipesS/N20-21,forexample,hadI/2%wateraddedwith thefinalchargeof ammo

37、nia.Althoughthesepipesgeneratedby farthemostgasby theendof thetestthananyof theothers,thegasgenerationoccurredprimarilyin thefirstmonthof operation.Thereafter,thesepipeshada loweraveragegas-generationratethananyof theotheraluminum-walledpipes.Thevacuum-bake-outstepis usedin theprocessingof thealumin

38、um-walledheatpipesprimarilyto driveoffwater. To assesstheeffectofthisamountof water,heatpipesS/N18-19did nothavea bake-out.HeatpipeS/N 18performedroughlythesameas thepipesthathadthebake-outstep,exceptfora slightlyhighergas-generationrate. HeatpipeS/N 19,however,producedsurprisingresults:thequantityo

39、f gasit generatedand thegenerationrateare roughlya factorof ten lessthantherestof thealuminum-walledheatpipes.Theevidencefromboththeheatpipeswithoutthebake-outstepandwithwaterintentionallyaddedpointstowardwaterplayinga keyrole ineffectivepassivationof thealuminum. In thecaseof S/N 19,we canconjectur

40、ethatwithoutthebake-outtherewas sufficientwaterforeffectivepassivationduringthehigh-temperaturerefluxes. Thegasgeneratedduringthispassivationis purgedbeforethefinalcharge. HeatpipeS/N18 maynothavehadsufficientwaterforthepassivation.Inthecaseof SIN20-21,thepassivationoccursduringoperationwith thefina

41、lcharge,and hencethegasgeneratedduringpassivatlonremainedinthepipesduringthelifetest.3.3 THE EFFECTOF WICKSURFACEAREAON GASGENERATIONThreesetsof heatpipes,S/NI-3,7-9,and 13-15,wereoperatedat80Candusedto assesstheeffectof wicksurfaceareaon generationrate.S/NI-3hadnowlck (zeroarea),S/N7-9hadthenominal

42、stainless-steelwick (O.O044-in-dia.wire,81.1%porosity),andS/N13-15hada high-surface-areawick (O.O034-in-dia.wire,8:.2%porosity),whichhas30%-20-i977005239-023Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26148-6004-RU-00moreareathannominal. Theavera

43、geamountof gasgeneratedandthegas-gzneratiunratesforthethreesetsof heatpipesare roughl)the same(seeTable2.4). Thisresultsuggeststhatthereis sufficientsurfaceareayenerationevenwithouta wickandthattherateandtotalgasquantityiscontrolledby thefluidcharge,andnottneavailableinteriorsurfacearea.3.4 MATERIAL

44、SAFFECTON GASGENERATIONAs expected,theall-stainless-steelheatpipeshadby farshe leastamountof gas. We alsoexpectedthatthegalvaniccouplebetweenstainlesssteelandaluminumwouldcausethealuminum/stainless-steelheatpipestogenerateconsiderablymoregasthantheall-aluminumheatpipes. Thiswastrueonlyforthepipesope

45、ratedat the lowtemperatureof 40C. At 80 andI00C,thegasgenerationin theall-aluminumandaluminum/stainless-steelwere comparable.In fact,at thesetemperaturestherateswere higherfortheall-aluminumpipes,buttheamountof gasgeneratedwas less.Theseresultssuggestthatthegalvaniccoupleeffectivelycontributestopass

46、ivationat 80Candabove(hence,thelowerrateof generationfor thealuminum/stainless-steelcombination).The lowertemperatureof 40Csignificantlyretardsgasgenerationonlyin theabsenceof thegalvaniccouple(hence,therelativelysmallquantityof gasand lowratefor theall-aluminumheatpipesat thelowertemperature).3.5 T

47、HEEFFECTOF THETYPEOF CLEANINGPROCEDUREAND VACUUMFIRINGFORSTAINLESSSTEELONTHEGASGENERATIONRATEHeatpipesS/N148-149are identicalto S/N25-27(bothsetsareallaluminumandwereoperatedat 80C)exceptS/N148-gwerechemicallycleanedratherthansol_antcleaned. AlthoughS/N148-9were addedto thetestmatrix(hencetheyhadonl

48、ybeenon testfor140dayscomparedto approxi-matelyZ40daysfortheothers),thechemicallycleanedpipesgeneratedsignificantly less gas and at a lower rate than the solvent cleaned pipes.HeatpipesS/N 150-151arestalnless-steelheatpipesthatwere alsochemlcallycleanedratherthansolventcleanedand,inaddition,thehigh-tE,Bperaturevacuum-firlngstepwasdeleted. Heatpi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1