ImageVerifierCode 换一换
格式:PDF , 页数:36 ,大小:619.86KB ,
资源ID:836933      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836933.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA-TN-D-8351-1976 Noise response of cavities of varying dimensions at subsonic speeds《在亚音速下不同尺寸空腔的噪声响应》.pdf)为本站会员(registerpick115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA-TN-D-8351-1976 Noise response of cavities of varying dimensions at subsonic speeds《在亚音速下不同尺寸空腔的噪声响应》.pdf

1、NASA TECHNICAL NOTE NASA TN D-8351 ;n M f NOISE RESPONSE OF CAVITIES OF VARYING DIMENSIONS AT SUBSONIC SPEEDS Patricia J. W. Block Langley Research Center kmpton, Va. 23665 Y I I IATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. DECEMBER 1976 Provided by IHSNot for ResaleNo reproductio

2、n or networking permitted without license from IHS-,-,-NOISE RESPONSE OF CAVITIES OF VARYING DIMENSIONS AT SUBSONIC SPEEDS Patricia J. W. Block Langley Research Center SUMMARY An expression including the effect of the length-to-depth ratio is obtained to predict the resonant frequencies of a flow-ex

3、cited cavity and is shown to be in good agreement with experimental results. Interaction between the lengthwise vortical-acoustic modes and the depthwise standing-wave modes is shown to occur at Mach numbers between 0.1 and 0.5. A simple expression for the Mach number at which maximum-amplitude resp

4、onse occurs is derived on the basis of the interaction, and the onset Mach number is found to be slightly lower. The effect of the cavity dimensions on the type of noise spectra produced by the cavity is investigated. A circular-faced and a square cavity are compared as noise generators in a flow. I

5、NTRODUCTION In view of possible future reduction in certification levels for overall aircraft noise and of the recent advances in propulsive noise suppression, airframe noise reduction has become an important research objective. This objective has engendered the study of non- propulsive flow-surface

6、 interaction noise sources found on the airframe. One such noise source, the flow-excited cavity, can be used to model several structures on the airframe, in particular the landing gear wells. The literature contains many papers on large-amplitude internal pressure oscilla- tions found inside a flow

7、-excited cavity. A review of this literature may be found in ref- erence 1. There is very little information, however, concerning the sound generated by such an arrangement. It was shown in reference 1, where external or farfield sound mea- surements of a flow-excited cavity were made, that most but

8、 not all of the modes of the internal pressure fluctuations radiate as sound. Analytical models and flow visualizations contained in the work on internal pressure oscillations are helpful, therefore, in assessing the important parameters of noise generation. The prediction of the lengthwise internal

9、 oscillation frequencies reported in refer - ence 2 provides a semiempirical relationship for the Strouhal number; or nondimensional frequency, based on the cavity streamwise length. However, the dependence of Strouhal Provided by IHSNot for ResaleNo reproduction or networking permitted without lice

10、nse from IHS-,-,-number on cavity length-to-depth ratio from this relationship proved to be contrary to the experimental results of the present study. The analysis of reference 3 gives physical significance to the empirical constants in the Strouhal relationship of reference 2; how- ever, no depende

11、nce on length-to-depth ratio was obtained in the final result. This paper extends the work of reference 3 to include the effect of length-to-depth ratio on Strouhal number. Other investigators (refs. 4 and 5) have studied the depthwise modes that occur in cavities whose length-to-depth ratio is less

12、 than about 2. In this paper these results are written in the form of a Strouhal number also based on length for purposes of comparison with the Strouhal number of the lengthwise oscillation. On the basis of this comparison, a quantitative explanation is given for the interaction or coupling between

13、 lengthwise and depthwise modes observed in reference 1. Also a simple expression for the approximate Mach number at which oscillations begin in a cavity is obtained. An additional purpose of this paper is to gain insight regarding the important param eters of sound generation by a cavity in a flow.

14、 This experimental study includes measur ments of noise produced by cavities (rectangular and circular faced) of varying dimensior in a subsonic flow. Special emphasis was given to the spectral shape of the noise for the purpose of delineating regions of broadband or narrowband sourcebehavior as a f

15、unction of the flow velocity and cavity shape. Noise measurements were made in a reverberant environment over a Mach number range from 0.1 to 0.5. The cavity length-to-depth ratic varied from 0.3 to 8.0 and the length-to-width ratio varied from 0.3 to 1.85. SYMBOLS A?B constants in equations (5), (6

16、), and (7) having empirical values of 0.65 and 0.7 respectively a speed of sound, m/sec C proportionality constant D cavity depth, cm f frequency, kHz H?h magnitude and phase, respectively, of summation of monopole sources in equation (B6) Hf Hankel function of first kind 2 Provided by IHSNot for Re

17、saleNo reproduction or networking permitted without license from IHS-,-,-h07hi L LP LW M m NSt n P P Q RA r S t r intercept and slope, respectively, of phase function h when plotted against wL/a (see eq. (B9) Bessel function of first kind ratio of average vortex convection velocity across cavity mou

18、th to free-stream velocity, taken to be 0.57 real and imaginary parts of complex wave vector in x-direction cavity length (streamwise direction), cm acoustic pressure level, dB (re 20 pPa) acoustic power level, dB (re 1 pw) free-stream Mach number mass of fluid Strouhal number mode or stage number o

19、f vortical-acoustic oscillation acoustic pressure rms acoustic pressure ratio of center frequency to bandwidth of response of an oscillator specific acoustic radiation resistance radial distance from acoustic source acoustic source strength time radial acoustic velocity 3 Provided by IHSNot for Resa

20、leNo reproduction or networking permitted without license from IHS-,-,-uce free-stream velocity, m/sec W cavity width (cross-stream direction), cm specific acoustic radiation reactance xA X,Y rectangular coordinates Bessel function of second kind a! empirical constant in equation (2) P phase differe

21、nce between source and shear layer displacement at trailing edge 77 displacement of shear layer in y-direction P fluid density lag of shear layer displacement behind forcing mechanism at leading edge of cavity 0 angular frequency, 2af Subscripts : d depthwise standing-wave oscillation 1 lengthwise v

22、ortical-acoustic oscillation Abbreviations : ANRL aircraft noise reduction laboratory MIC microphone rms root mean square rPm revolutions per minute 4 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TEST APPARATUS AND PROCEDURE This experiment was ca

23、rried out .in two different reverberant environments, each having subsonic flow capability. These facilities were the Langlgy 55-foot vacuum cylinder and the reverberation room of the Langley aircraft noise reduction laboratory (ML) * Langley 55 -Foot Vacuum Cylinder Facility.- The vacuum cylinder i

24、s 55 feet in diameter with a hemispherical top (fig. l(a) and a volume of 3794 m3. To obtain flow over the cavity, the cylinder is par- tially evacuated and the cylinder pressure read. The air is exhausted into the cylinder through a 6.35-cm by 25.4-cm rectangular nozzle (fig. l(b) with a pneumatica

25、lly con- trolled conical inlet port plug. The velocity of the air through the nozzle was computed according to the compressible flow tables from the difference between the atmospheric pressure and the cylinder pressure which was read continuously. This method provided an absolute velocity within 1 p

26、ercent of that obtained in previous calibrations using a pitot- static tube; however, during a run the pressure differential, thus the velocity, varied. The variation in velocity during a run amounted to 4 percent of the average velocity for a Mach number of 0.17 and less than i2 percent for a Mach

27、number of 0.5. Test setup.- The nozzle guided the flow parallel to a flat 1.2-m-square plate in which the cavity was located (fig. l(b). The cavities used in this facility had a fixed depth of 3.81 cm. The length (streamwise direction) and width were varied independently from 2.54 cm to 7.62 cm. A c

28、ircular-faced cavity with a diameter of 7.62 cm was also tested. The test conditions for this experiment are given in table I. Acoustic measurement.- Acoustically, the inside of the cylinder, where sound mea- surements were made, was highly reverberant with a mean reverberation time of 10 sec. Altho

29、ugh this facility was not designed as a reverberation chamber, previous acoustic cal- ibrations (ref. 6) demonstrated the suitability of this facility for acoustic research and also its reverberant characteristics at the measurement position. By using these calibra- tions, a single one-half-inch con

30、denser-type microphone was placed inside the chamber where the acoustic field was known to be reverberant. All rms pressure levels were con- verted to acoustic power levels as specified in the American National Standard S1.21-1972 (ref. 7) using the 1-kHz reverberation time. Since the reverberation

31、time changes with frequency, conversion of the data using a single reverberation time (viz, that of 1 kHz) leads to a small error in the power level across the spectrum. A correction for this error has not been applied to the data since comparisons of a qualitative nature only are pre- sented herein

32、. The corrections, however, are provided in appendix A for those interested in obtaining the true power levels across the entire frequency range. The barometric pressure change in the chamber from the highest velocity to the lowest amounted to a 5 Provided by IHSNot for ResaleNo reproduction or netw

33、orking permitted without license from IHS-,-,-correction to the acoustic power of less than 0.1 dB. This correction was less than the accuracy of the spectral amplitude estimates which were about 1 dB. The data were obtained on line by means of the microphone with a preamplifier, filter, amplifier,

34、Fourier analyzer, and X-Y plotter. Narrowband spectra from 0 to 5 kHz were obtained from the microphone for each test condition. The frequency resolution was 20 Hz for all spectra. Langley ANRL Reverberant Chamber Facility.- The ANRL reverberation room is shown in figure 2(a). The air is pro- vided

35、by a centrifugal compressor through a 30-cm by 60-cm rectangular nozzle. The velocity through the nozzle was calibrated with a Pitot-static probe and was controlled by setting the compressor rpm. The error in velocity with this method was less than 4 per- cent. In this facility, Mach numbers from 0.

36、09 to 0.18 were achieved with this nozzle. Test setup.- The nozzle directed the flow over a flat plate in which the cavity was situated (fig. 2(b). This cavity had a fixed streamwise length of 4.05 cm and a width of 7.45 cm. The depth was varied from 0 to 13 cm. The test conditions in this facility

37、are listed in table II. Acoustic measurement. - The ANRL reverberation room is a rectangular chamber having splayed walls and a mean reverberation time of approximately 8 sec for frequencier above 250 Hz. Three one-half-inch condenser -type microphones were mounted inside the chamber and positioned

38、in the reverberant or diffuse field. This was done by suspending a calibrated broadband source in place of the cavity and positioning the microphones until all were recording the same spectra. Subsequent analysis of the cavity noise data from the three microphones showed agreement within 2 dB across

39、 the frequency range for all conditions. Narrowband spectra were obtained from all microphones from 0 to 10 kHz. Only the frequencies of the cavity oscillations are reported in this study, Consequently no spectral amplitude correction need be applied. Data were recorded on magnetic tape and analyzed

40、 by a digital computer. Outputs consisted of narrowband spectra with frequency resolution of 20 Hz. ANALYSIS Background Several investigators (refs. 1, 2, 4, 5, and 8 to 10) have recorded the frequencies of oscillation of flow-excited cavities. The Strouhal number, fL NSt = v, 6 Provided by IHSNot f

41、or ResaleNo reproduction or networking permitted without license from IHS-,-,-was observed to change slowly with Mach number. Rossiter (ref. 2) obtained the following empirical relationship for NSt 2 M E 0.4: (the Strouhal number for lengthwise oscillations) for fL- n-a (lis + NSt,2 = u, - Here, n i

42、s the stage or mode number, a is an empirical constant which increases as the length-to-depth ratio L/D increases, is the ratio of the vortex convection velocity across the cavity mouth to the free-stream velocity, and M is the Mach number. The value for a that is generally considered to produce the

43、 best fit is 0.25. Figure 3 shows Strouhal numbers obtained in several investigations plotted against Mach number. The value of L/D at each data point indicated by a test-point symbol is given in the key. The solid curves represent the first three modes of equation (2) where = 0.57 and a = 0.25. The

44、 data for values of M S 0.4 generally indicate that NstYl increases as L/D increases at a given Mach number. This implies that the Strouhal number is a function of L/D and that the dependence is inverse to that implied by equa- tion (2). These data include cases where the cavity depth was varied and

45、 where the streamwise length was varied to achieve the given L/D ratios. Also of note in figure 3 is the fact that for the Mach number range of interest (viz, 0.1 5 M C= 0.4), the L/D ratio of the cavities is less than about 4.0, although cavities of larger L/D were tested. Therefore, to improve the

46、 existing prediction methods for the middle and lower Mach number range, one should include the cavity depth by way of the L/D ratio and also consider other oscillatory phenomena common in cavities whose length-to-depth ratio is less than about 4.0. Other such phenomena include depthwise standing-wa

47、ve modes and the volume-dependent Helmholtz oscillation. Another motivation for considering these other oscillatory phenomena stems from observations (ref. 1) that coupling or interaction between the lengthwise, or vortical- acoustic, oscillations and the depthwise modes does occur in some situation

48、s. When the frequency of the lengthwise oscillation, which is not purely acoustic but depends on vortex shedding, approaches the frequency of the depthwise standing-wave modes, considerable amplification of the radiated sound occurs. In cavities whose ratio of volume to surface area is large, the He

49、lmholtz oscillation would be considered, but for the rectangular cav- ities tested herein, it is believed that the depthwise standing-wave oscillation is present. Resonant Frequency Prediction Lengthwise oscillations.- Several investigations (see ref. 1 for review) of cavity oscillation have concluded that a feedback mechanism, such as is found in edgetone pro- duction, is the cause

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1