ImageVerifierCode 换一换
格式:PDF , 页数:76 ,大小:2.64MB ,
资源ID:836957      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-836957.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NASA-TP-1652-1980 Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5 9《当马赫数为5 9时空气中发生率的钝圆锥测量和预测的振动形状和空气动力系数》.pdf)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

NASA-TP-1652-1980 Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in air at Mach 5 9《当马赫数为5 9时空气中发生率的钝圆锥测量和预测的振动形状和空气动力系数》.pdf

1、hNASA-TP-1652 19800015109 !NASA Technical Paper 1652 iMeasured and Predicted ShockShapes and AerodynamicCoefficients for Blunted Conesat Incidence in Air at Mach 5.9Robert L. Calloway and Nancy H. WhiteMAY 1980-“ 1 ! iI._A_Q1rY ,_r_: _“H CENTERLIBRARY, iqASAHAMPTON VIRGIrqlA1/L5/%Provided by IHSNot

2、for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NASA Technical Paper 1652Measured and Predicted ShockShapes and AerodynamicCoefficients for Blunted Conesat Incidence in Ai

3、r at Mach 5.9Robert L. Calloway and Nancy H. WhiteLangley Research CenterHantpton, VirginiaNational Aeronauticsand Space AdministrationScientific and TechnicalInformationOffice1980Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for

4、 ResaleNo reproduction or networking permitted without license from IHS-,-,-SUMMARYExperimentalvaluesof shockshapes (anglesof attack e of 0O and 10)and staticaerodynamiccoefficients(_= -4 to 12) for sharpand sphericallybluntedconeshaving cone half-anglesof 30, 45, 60, and 70 and nose-bluntnessratios

5、of 0, 0.25,and 0.50 are presented. Shockshapeswere alsomeasuredat e = 0 by using a flat-facedcylinder(90 cone)and a hemispher-icallybluntedcylinder (sphere). All testswere conductedin air (ratioofspecificheats y of 7/5) at a free-streamMach numberof 5.9 and a unit free-streamReynoldsnumberof 2.80 10

6、6per meter. Comparisonsbetweenmeasuredvalues andpredictedvalueswere made by usingseveralnumericaland simpleengineeringmethods.Presentresultsare generallyin excellentagreementwithmeasuredresultsfrom othersourcesand with the predictedvalues from severalnumericalmethods.A modifiedNewtonianmethodprovide

7、dconsistentlypoor agreementwithmeasuredaxial-forcecoefficientsandwith normal-forceandpitching-momentcoefficientsfor the 60 cone. Measuredstaticaerodynamiccoefficientsfor the largehalf-angleconesshow that theeffectsof nose-bluntnessratiosare small, indicat-ing thelack of importanceof thisparameterin

8、the aerodynamicdesignof entryprobeshavinglargehalf-anglecone forebodies.INTRODUCTIONThe sphericallybluntedcone has been usedas the forebodyshapeof theplanetaryentryprobefor both theViking ProjectandPioneerVenus, and itwill be used againfor theupcomingProjectGalileo (JupiterProbe). The finalaero-ther

9、modynamicdesignfor theseplanetaryentryprobesmust be determinedby analyticaltechniquesbecausethe entryenvironmentof otherplanetscannotbe simulatedby usingEarth-basedexperimentalfacilities. Experimentalresultsare needed,though,to validatethe theoreticalmethodsand to provideinputsfor empiricaltechnique

10、sor correlationprocedures(ref.1). Throughproperuseof bothmeasuredand predictedresults,futureplanetaryprobes can bedesignedwith less conservatismso thatmore payloadcanbe accommodated.Resultsfrom experimentalstudiesconductedon sharpand sphericallybluntedconesin air at supersonicandhypersonicMach numbe

11、rsare extensive.Most of the earlywork (aerodynamiccoefficientsand pressuremeasurements)was conductedon coneswith smallhalf-angles(8_ 40) becausetheywerecandidatesfor ballisticreentryintoour own atmosphere. References2 and 3provide,respectively,summarytablesand a compilationof themajor body ofdata on

12、 conesup throughthemid-960s. Particularexamplesof someof theearlyexperimentalwork are given in references4 to 11. In laterwork(refs.12 to 19), coneswith largerhalf-angleswere studiedwith increasinginterestas candidateconfigurationsfor planetaryentryprobesand for basicresearchin areasforwhich datawer

13、e lacking.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-The purposeof this reportis to presenta portionof the resultsfrom astudywhich is designedto enrich the hypersonicdata base forentry-typegeom-etriesover a rangeof anglesof attack,ratiosof speci

14、ficheats,andMachnumbers. The presentresults (andthoseof ref. 20) are part of a systematicstudyof aerodynamiccoefficientsand shockshapesat anglesof attackwhichare valuablefor validationof predictionmethodsand completionof thehyper-sonicdata base. Experimentalresultspresentedhereinare for sharpandsphe

15、ricallybluntedconeshaving cone half-anglesof 30, 45, 60, and 70and nose-bluntnessratiosof 0, 0.25,and 0.50. These configurationsweretestedin theLangley20-InchMach 6 Tunnel at a Mach numberof 5.9. Measure-ments includeshockshapesat _ = 0 and 0 and staticaerodynamiccoeffi-cients takenat 2 incrementsfo

16、r e = -4 to 2. Shock shapesat 0 angleof attackfor a 90 cone and fora spherewere obtainedby usinga flat-facedcylindermodel and a hemisphericallybluntedcylindermodel, respectively.Comparisonsbetweenmeasuredvaluesand predictedvaluesaremade by usingseveralnumericalmethods and simpleengineeringmethods. A

17、lso, experimentaldata from references21 to 26 are comparedwith thepresentresults.SYMBOLSAxial forceCA axial-forcecoefficient,PitchingmomentCm pitching-momentcoefficient, qSdNormal forceCN normal-forcecoefficient,Cp,max Newtonianpressurecoefficientd model base diameter,cmZ model length,cmMz localMach

18、 numberM_ free-streamMach numberPt stagnationpressure,kPaq_ free-streamdynamicpressure,kPaRoo,d free-streamReynoldsnumberbasedon drb model base radius,cmrn modelnose radius,cm2Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-rn/rb nose-bluntnessratioS

19、 model base area,cm2Tt stagnationtemperature,KV_ free-streamvelocity,m/secx,r cylindricalcoordinates(fig.1(a)angleof attack,degy ratioof specificheats_* boundary-layerdisplacementthickness,cmdistancebetweenmodel surfaceand shockwave, measuredparalleltomodel axis,cm (fig.(a) cone half-angle,degdet mi

20、nimumcone half-anglefor shockdetachment,degFACILITYANDTESTOONDITIONSShockshapesand staticaerodynamiccoefficientswere obtainedfrom flowvisualizationand forceandmoment testsconductedin the Langley20-InchMach 6 Tunnel. Operation,flowconditions,and detailsof force testinginthisfacilityaredescribed in re

21、ference27. All testswere conductedat thefollowingflowconditions:M_= 5.9Pt = 276kPaTt = 431 KR_,d = 0.42 06 (cones)R_,d = 0.07x 06 (cylinders)MODELSFigure1(a) providesa generalplanformview and thedimensionsof the2 cone models tested. Thesemodelswere constructedfrom aluminumand have3Provided by IHSNot

22、 for ResaleNo reproduction or networking permitted without license from IHS-,-,-base diametersof approximately5.08 cm. Cone half-anglesof 30, 45, 60,and 70 were examined,and the nose-bluntnessratios (0,0.25,and 0.50)werevariedfor each cone half-angle. A flat-facedcylinderanda hemisphericallybluntedc

23、ylinder,each with base diametersof 3.81cm (fig.(b),were testedat _ = 0 to provideshockshapesfor a 90 cone and a sphere,respectively.A photographof the cone models testedis shown in figure2. The taperedcylindricalsectionextendingbehindthemodel forebodywasdesigned to housethe strain-gagebalance. These

24、modelswere also used for theexperimentaltestsin heliumdescribedin reference20.TEST METHODSFlow visualizationand forceand moment testswere conductedsimulta-neously. Schlierenphotographswere used to obtain themeasuredshockloca-tionsat _ = 0 andat _ = 10. The shocklocationswere read manuallyfromphotogr

25、aphssimilarto the one shownin figure3. The error in thesemeasure-ments is estimatedto be .5percentof rb,which is aboutthe indicatedthicknessof theshock wave in the photograph. Shock-layerthicknessesweremeasuredparallelto themodel axis (seefig. (a)and are presentedin tableI. For valuesof r/rb greater

26、than .0, A wasmeasuredfrom animaginaryextensionof theplanedefinedby thebase of themodel.Aerodynamicforceand moment testswereperformedwith themodels mountedon a sting-supported,five-componentstrain-gagebalance (norolling-momentcomponent). The straightstingwas attachedto the angle-of-attackmechanisman

27、d datawere obtainedin 2 incrementsof angleof attackfrom -4 to 2.The angleof attackwas setopticallyby usinga point lightsourceadjacenttothe test sectionand a smalllens-prismmountedon the taperedcylindricalsec-tion extendingbehind themodel. The imageof the sourcewas reflectedby theprismand focusedby t

28、he lens onto a boardwhichwas calibratedto indicatetheangleof attack. Data were obtainedduringthe test runs with themodel setatdiscreteangles of attack. The accuracyof determiningthe angleof attack inthismanner is estimatedto be 0.25. All testswere conductedat a sideslipangleof 0, and no base pressur

29、eswere measured.The referencearea for themodelswas thebase area S and the referencelengthwas thebase diameter d. All pitching-momentdata were reducedaboutthe actualnose of each model. The estimateduncertaintiesin themeasuredstaticaerodynamiccoefficientsbasedon a balanceaccuracyof 0.5percentofthe des

30、ignloadsare as follows:dCN . 0.020dCA . 0.00Acm . o.oloThe measuredstaticaerodynamiccoefficientsare presentedin tableII.4Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-PREDICTIONMETHODSIn termsof theMach numberbetweenthe shockwave and the body MZ, s

31、ev-eral flow conditionswill occurfor the rangeof cone half-anglesand nose-bluntnessratiostested. For u = 0, the flow conditionsthat can occurareillustratedin figure4. For the sharpconewith det,therewill be subsonicflow over the entirebodywith the sonicline (locusof pointswhere Mz = 1.0) extendingfro

32、m the shockwave to the base of the body,as shownin figure4(b). For the sharpconethere is a limitedrangeof cone half-angleswhichcausesa regionof sub-sonicflow adjacentto the surface (notillustrated).The size of thisregionincreasesas approaches edet,but the shockwave remainsattached.For air at M_= 6.0

33、 this occursbetween = 53 and 0 = det = 55.4(ref.28).When the cone is sphericallybluntedand 0det (fig.4(d),subsonicflow occursover theentirebody (regardlessof the nose bluntness),and the flow conditionsaresimilarto thoseof figure4(b). Themost complicatedflow conditionsoccurwhen thereis subsonicflow o

34、ver the nose but is not smallenoughto allowthe flow to becomecompletelysupersonicaft of the sphere-conejunctionandnot largeenoughto producetotalsubsonicflow in theshocklayer (fig.4(e).The sonicline can assumeseveralshapesfor valuesof 0 in this range,includingtheone shownin figure4(e). For anglesof a

35、ttackother than 0,combinationsof the flowconditionsshown in figure4 can occursimultaneouslyin differentmeridionalplanes,dependingon the combinationof cone half-angle,nose bluntness,and angleof attack.A numberof numericalmethodswere used to predictshockshapesand pres-sure coefficientsfor the configur

36、ationsstudied. Thesemethodswere used pri-marily becauseof theiraccessibilityand becausethey coveredthe rangeofflow conditionsbeingstudied. In additionto integratingthe pressurecoeffi-cientsto determinepredictedstaticaerodynamiccoefficients,valuespredictedby Newtonianmethodsfrom reference29 were also

37、 used for comparison. The fol-lowingtableliststhe numericalmethodsused and indicatesthe localflow con-ditions (aspreviouslydescribed)to which theywere applied:All All Subsonicnose,lSubsonicnose,Author Referencecapabilitysupersonicsubsonic supersonic mixedon coneconeKlunker,South,and Davis 30 X XKuma

38、r and Gravesa 31 X X Xzoby andGraves 32 XMorettiand Bleich 33 X XSutton 34 X X XBarnwell 35 X XSouth 36 XaSolutionincludesthe effectsof viscosity.See reference20 for a briefdescriptionof thesetheoreticalmethods.5Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

39、m IHS-,-,-RESULTSAND DISCUSSIONSShockShapes for 0 Angleof AttackSharpcones.-Measuredand predictedshockshapesfor sharpconeswith8 = 30 and 45 (figs.5(a) and (b)show the straightshockwave that isobtainedwhen it is attachedto thebody and the localMach number is super-sonic. Althoughthe inviscidmethodsof

40、 references28 and 30 provideexcellentagreement(within2 percent)with measuredshock-layerthicknessesfor bothcone half-angles,calculatingtheboundary-layerdisplacementthickness 6“and adding it to theoriginalbody to get an equivalentshaperesultsin fur-ther improvementin the agreementbetweenmeasuredand pr

41、edictedvalues. Anundocumentedlaminar,similarboundary-layersolutionwrittenby RalphD.Watson of theLangleyResearchCenterwas used to calculatethedisplacementthicknessesfor thesetwo cases.For the sharpconeswith = 60 and 70 (figs.5(c)and (d),the shockwave is detachedand the localMach number is subsonic. T

42、he methodof refer-ence 36 was used to predictthe shockshapesby inputtinga nose-bluntnessratio rn/rb of 0.0,resultingin excellentagreementbetweenmeasuredandpredictedvaluesforboth cone half-angles.Shock shapesfor a 90 conewere measuredfrom schlierenphotographsof aflat-facedcylinderand are comparedwith

43、 predictedvalues (refs.35 and 36) infigure6. Good agreement(within5 percent)betweenmeasuredandpredictedshock-layerthicknessesis shownby both methods.Blunt cones.-Measuredandpredictedshock shapesfor the sphericallybluntedconesat _ = 0 arepresentedin figure7. For = 30 andrn/rb = 0.25and 0.50 (figs.7(a

44、) and (b),the localflow is subsonicin thenose regionand supersonicover the conicalafterbodyas indicatedby the pre-dicted (ref.34) sonicline. There is excellentagreementbetweenmeasuredandpredicted (refs.31 to 34) shocklocations,except that the approximatemethodof reference32 slightlyunderpredictsthes

45、hock shapeaft of the sphere-conejunctionfor rn/rb = 0.50.Measuredshockshapesfor 8 = 45 and both nose-bluntnessratios(figs.7(c) and (d)are in excellentagreementwith predictedshockshapesfrom references31, 32, and 34. By assumingcompletelysupersonicflow alongthe conicalafterbody,it was possibleto use t

46、he approximatemethodof refer-ence 32. Themethodof reference33 was not applicablebecauseof the presenceof subsonicflowalong theconicalafterbodyas indicatedby the soniclinespredictedby themethod of reference34.As shownby the soniclines (calculatedby themethod of ref. 35), theentirelocalflow field is s

47、ubsonicfor = 60 and 70 and rn/rb = 0.25and 0.50 (figs.7(e), (f), (g),and (h). All threemethods (refs.34 to 36)used to calculatethe shock shapesfor thesefour casesprovideexcellentagreementwithmeasuredvalues.Shockshapesfor a spherewere measuredfrom schlierenphotographsof thehemisphericallybluntedcylin

48、der(rn/rb = .00)and comparedwith predicted6Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-values (refs. 32 to 34) in figure 8. The excellent agreement between measuredand predicted shock shapes for the sphere was expected since all the previouscomparisons had shown excellent agreement in the spherically blunted noseregion for cones with 1Sonic lineNI_I I M_IoniC line iivI_t I -ivl_t_i - (e)Bluntedcone; det“ 0Figure4. Exampleso l

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1