ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:556.50KB ,
资源ID:839003      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-839003.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]工程硕士(GCT)数学模拟试卷175及答案与解析.doc)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]工程硕士(GCT)数学模拟试卷175及答案与解析.doc

1、工程硕士(GCT )数学模拟试卷 175 及答案与解析一、选择题(25 题,每小题 4 分,共 100 分)下列每题给出的四个选项中,只有一个选项符合题目要求。1 2 已知 对任意的正整数都成立,则 an= 3 甲、乙两台车床 3h 共生产某种零件 210 个两台车床同时生产这种零件,在相同时间内甲车床生产了 666 个,乙车床生产了 594 个甲、乙两台车床每小时生产的零件个数分别为 (A)33,37(B) 37,33(C) 99,111(D)111,994 一列火车通过一座长为 600m 的桥梁用了 15s,经过一根电杆用了 5s,此列火车的长度为 m(A)150(B) 200(C) 30

2、0(D)4005 设 1 是底面直径与高均为 2R 的圆柱体, 2 是 1 的内切球体,K 1 是 1 与 2 的体积之比,K 2 是 1 与 2 的表面积之比,则 K1,K 2 的值分别是 6 从 5 位男教师和 4 位女教师中选出 3 人担任班主任,这 3 位教师中男、女教师都有的概率是 7 下列 4 个式子中,对一切非零实数 x 都成立的是 (A) =sinx(B) lnx2=2lnx(C) arcsin(sin x)x=x(D) =e|x|8 已知 a1,不等式 a 一 x 的解集是 (A)(1 ,+)(B) ( ,+)(C) (a,+)(D)9 已知 x0,y0,且 x,a,b,y

3、成等差数列,x,c ,d,y 成等比数列,则的最小值是 (A)0(B) 1(C) 2(D)410 如图所示,AB 是圆 O 的直径,延长 AB 至 C,使 AB=2BC,且 BC=2,CD 是圆 O 的切线,切点为 D,连接 AD,则 (A)CD= ,DAB=30(B) CD=4, DAB=30(C) CD= , DAB=45(D)CD=4, DAB=4511 下列四个选项的数中最大的是 (A)(ln2) 2(B) ln(ln2)(C)(D)ln212 AABC 中,A,B,C 的对边分别是 a,b,c已知 则B 等于 13 已知 aR,函数 f(x)=x2+ ,则下列命题为真命题的是 (A)

4、对一切 aR,f(x)在(0,+)是增函数(B)对一切 aR,f(x) 在 (0,+)是减函数(C)存在一个 aR,使 f(x)是偶函数(D)存在一个 aR,使 f(x)是奇函数14 椭圆 =1 的焦点为 F1,F 2点 P 在椭圆上若线段 PF1 的中点在 y 轴上,则 = (A)8(B) 7(C) 6(D)515 如图所示,长方形 ABCD 中,阴影部分是直角三角形且面积为 54cm2,OB 的长为 9cm,OD 的长为 16cm,此长方形的面积为 cm 2(A)300(B) 192(C) 150(D)9616 设 f(x)可导,F(x)=f(x)(1+x),若要使 F(x)在 x=0 处

5、可导,则必有 (A)f(x)=0(B) f(0)=1(C) f(0)=0(D)f(0)=117 设 f(lnx)= ,则f(x)dx= (A)e -xln(1+ex)一 x+1n(1+ex)+C(B)一 e-xln(1+ex)一 x+ln(1+ex)+C(C)一 e-xln(1+ex)+zln(1+ex)+C(D)e -xln(1+ex)+xln(1+ex)+C18 函数 f(x)在a,b内有定义,其导数 f(x)的图形如图所示,则 (A)x 1,x 2 都是极值点(B) (x1,f(x 1),(x 2,f(x 2)都是拐点(C) x1 是极值点,(x 2,f(x 2)是拐点(D)(x 1,f

6、(x 1)是拐点,x 2 是极值点19 设 f(x)是连续函数,且 01f(x)dx=2,令 g(x)=01f(xt)dt,已知 g(1)=1,则 f(1)= (A)1(B) 2(C) 3(D)420 设 f(a 一 x)g(x)dx=bcf(x)g(a 一 x)dx(a0),则必有 。21 已知抛物线 y=px2+x(其中 p0)在第一象限内与直线 x+y=5 相切,则此抛物线与 x 轴所围的面积 S= 22 设 A,B 为三阶矩阵,且A=3,B=2,A -1+B=2,则A+B -1= (A)(B)(C) 2(D)323 已知向量 =(一 1,1,k) T 是矩阵 A= 的逆矩阵 A-1 的

7、特征向量,则 k= (A)一 2(B)一 1(C) 0(D)124 设 1, 2, 3, 4 是三维非零向量 (1)如果 r(1, 2, 3)=3,则 4 可由1, 2, 3 线性表出 (2)如果 4 不能由 1, 2, 3 线性表出,则 1, 2, 3 线性相关 (3)如果 4 不能由 1, 2, 3 线性表出,则 2r(1, 2, 3, 4)3 (4)如果r(1+2, 2, 3)=r(1, 2, 3, 4),则 4 可由 1, 2, 3 线性表出 上述命题中,正确命题的个数为 个(A)1(B) 2(C) 3(D)425 若 A,A *,B 都是 n 阶非零矩阵,且 A*是 A 的伴随矩阵,

8、AB=0,则 r(B)= (A)1(B) n 一 1(C) n(D)不能确定工程硕士(GCT )数学模拟试卷 175 答案与解析一、选择题(25 题,每小题 4 分,共 100 分)下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 因为 n(n+2)=(n+1) 一 1(n+1)4-1=(n+1)2 一 1,即 n(n+2)+1=(n+1)2,所以 故选(B)2 【正确答案】 D【试题解析】 故选(D)3 【正确答案】 B【试题解析】 设甲车床生产 666 个零件所用时间为 t(h),则有 =210,解得 t=18,从而 即甲、乙两台车床每小时生产的零件个数

9、分别为 37 和 33故选(B)4 【正确答案】 C【试题解析】 列车经过一根电杆用了 5s,这说明列车用 5s 走过它自己的长度,同时列车用 15s 走过它的全长再加 600m,因此列车走 600m 要用 10s,5s 走300m,因此列车长度为 300m故选(C)5 【正确答案】 A【试题解析】 记 i(j=1,2)的体积为 Vj,表面积为 Sj,则 V 1=R22R=2nR 3, V2= R3, S 1=2R2R+2R 2=6R2, S 2=4R2 由此得 故选(A)6 【正确答案】 B【试题解析】 从 9 位教师中选 3 位,共有 C93 种不同选法其中二男一女和一男二女的选法共有 C

10、52C41+C51C42 种所求概率为 故选(B) 7 【正确答案】 B【试题解析】 =sinx 所以(A) 式子左端一定是非负数,而sin x可以是负数,(A)不对一切非零实数成立由反正弦函数的性质,(C)中式子只对 x 时,sinx=-1,而 arcsin(sinx)=arcsin(一 1)=一 ,所以不能选(C) (D)中式子左端 ,开方运算不是对 x2 的所以(D)也不成立 只有(B)对一切非零实数 x 成立故选(B)8 【正确答案】 B【试题解析】 设函数 y= ,两边平方得 x2 一 y2=1,此函数的图像是等轴双曲线在 x 轴上方的部分(见图)又设函数 y=a 一 x,其图像是与

11、双曲线一条渐近线平行的直线,它与 y 轴交于点(0,a)直线与双曲线交点为 P,其横坐标为 x*=当 xx *时双曲线图像在直线图像上方 故选(B)9 【正确答案】 D【试题解析】 x,a,b , y 成等差数列,所以 x+y=a+bx,c,d,y 成等比数列,所以 xy=cd当且仅当x=y 时等号成立 故选(D)10 【正确答案】 A【试题解析】 由 AB=2BC,BC=2 得 OC=4,OB=2连结 OD,因为 ODCD,所以ODC 是直角三角形,所以 又因为OC=20D,所以圆心角DOB=60,所以圆周角DAB= DOB=30故选(A) 11 【正确答案】 D【试题解析】 函数 y=ln

12、x 为单调递增函数,对数的底 e2,所以 0ln21,故有 (ln2)2ln2, ln2 ,ln(ln2)0ln2故选(D)12 【正确答案】 D【试题解析】 由已知条件及正弦定理有故选(D)13 【正确答案】 C【试题解析】 若取 a=0,则 f(r)=x2 为偶函数,所以(C) 为真命题故选(C) 注意 当 a=0 时,f(x)=x 2 在(0,+) 不是减函数,故(B)为假命题 若取 a=1,则 f(x)=x2+时,f(x)0,f(x)在(0,+)不是增函数,故(A)为假命题 而对所有 aR, f(x)+f(一 x)=x2+ =2x2,所以 f(x)=一f(一 x)不能恒成立,即 f(x

13、)不是奇函数,故(D)也是假命题 故选(C)14 【正确答案】 B【试题解析】 因为 c2=a2 一 b2=123=9,故 c=3所以 F1,F 2 两点的坐标分别为(一 3, 0),(3,0)。PF 1 中点在 y 轴上,故可设 P(3,y)。代入椭圆方程,有=7故选(B)15 【正确答案】 A【试题解析】 阴影部分直角三角形面积为 54cm2, OB=9cm,因此ABD 的面积等于 BDAO,因此长方形面积为 BDAO=(BO+OD)AO=(9+16)12=300(cm 2)故选(A)16 【正确答案】 A【试题解析】 要使故选(A)17 【正确答案】 C【试题解析】 故选(C)18 【正

14、确答案】 D【试题解析】 在 x1 处,f(x)由单调递减变为单调递增,因此曲线 f(x)由凸变为凹,于是(x 1,f(x 1)是曲线的拐点;在 x2 处,f(x 2)=0,f(x)的符号由负变为正,因此 x2是 f(x)的极小值点 故选(D) 19 【正确答案】 C【试题解析】 在 g(x)=01f(xt)dt 中,令 xt=u,则 dt= 且当 t=0 时,u=0;当 t=1时,u=x于是 在上式中令 x=1,得 g(1)=f(1)一01f(u)du,所以 f(1)=g(1)+01f(u)du=1+2=3 故选(C) 20 【正确答案】 A【试题解析】 在 f(ax)g(x)dx 中,令

15、a 一 x=t,则当 x=a 时,t=0 ,当 x=,且 dx=一 dt,因此有故选(A)21 【正确答案】 B【试题解析】 因直线 x+y=5 与抛物线 y=px2+x 相切,所以它们有唯一的公共点,由方程组 得 px2+2x-5=0,其判别式必等于零,即 =2 2 一 4p(一 5)=4+20p=0,从而得 p=一 x2+x 抛物线 y=一 x2+x 开口向下而且与z 轴的交点横坐标为 x1=0,x 2=5,因此,此抛物线与 x 轴所围的面积为故选(B)22 【正确答案】 D【试题解析】 因为B=2,所以B -1= 从而 A+B-1=AE+A -1B-1= AB+A -1B -1=32 =

16、3故选(D)23 【正确答案】 D【试题解析】 设 是 所相应的特征值,则 A-1=,于是 =A,即故选(D)24 【正确答案】 D【试题解析】 因 1, 2, 3, 4 是三维向量,所以有 r(1, 2, 3)3,r( 1, 2, 3, 4)3 对于(1) ,因 r(1, 2, 3)=3,则 1, 2, 3 线性无关又 1, 2, 3, 4 必线性相关,因此 4 可由 1, 2, 3,线性表出 对于(2),由(1)可知如果 1, 2, 3 线性无关,则 4 可由 1, 2, 3 线性表出,所以当 4 不能由 1, 2, 3 线性表出时, 1, 2, 3 必线性相关 对于(3),因1, 2,

17、3, 4 是非零向量,而 4 又不能由 1, 2, 3 线性表出,所以 r(4, I)一 2(i=1,2,3),从而 r(1, 2, 3, 4)2,于是有 2r(1, 2, 3, 4)3 对于(4),因矩阵经过初等变换后不改变其秩,所以有 r(1+2, 2, 3)=r(1, 2, 3, 4),因而有 r(1, 2, 3)=r(1, 2, 3, 4),这表明非齐次方程组 1x1+2x1+3x1=4 有解,从而 4 可由 1, 2, 3, 4 线性表出 命题(1),(2),(3),(4)都是正确的 故选 (D)25 【正确答案】 A【试题解析】 因 B 是非零 n 阶矩阵,所以线性方程组 Ax=0 有非零解,因而 r(A)n又因 A*是非零矩阵,所以 A 存在 n 一 1 阶非零子式,因而 r(A)=n-1 线性方程组 Ax=0 的基础解系中含有线性无关的解向量的个数等于 n 一 r(A)=1矩阵B 为非零矩阵,它的每一列均为 Ax=0 的解,因此 r(B)=1 故选(A)

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1