ImageVerifierCode 换一换
格式:DOC , 页数:29 ,大小:840.50KB ,
资源ID:851572      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-851572.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编3及答案与解析.doc)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编3及答案与解析.doc

1、考研数学一(一元函数积分学)历年真题试卷汇编 3 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 (2007 年) 如图,连续函数 y=f(x)在区间一 3,一 22,3上的图形分别是直径为 1 的上、下半圆周,在区间一 2,0,0,2 上的图形分别是直径为 2 的下、上半圆周设 则下列结论正确的是( ) 2 (2009 年) 设函数 y=f(x)在区间一 1,3上的图形为 则函数的图形为 3 (2010 年) 设 m,n 均是正整数,则反常积分 的收敛性(A)仅与 m 的取值有关(B)仅与 n 的取值有关(C)与 m,n 的取值都有关(D)与 m,n 的取值都无

2、关 4 (2010 年)5 (2011 年) 设则I,J,K 的大小大系为(A)IJK(B) IKJ(C) JIK(D)KJI6 (2012 年) 设 则有(A)I 1I 2 I3(B) I3I 2I 1(C) I2I 3I 1(D)I 2I 1 I37 (2014 年) 若则 a1 cosx+b1 sinx=(A)2sinx(B) 2cosx(C) 2sinx(D)2cosdx8 (2016 年) 已知函数 则 f(x)的一个原函数是( ) 9 (2016 年) 若反常积分 收敛,则( )(A)a1 且 b1(B) a1 且 b1(C) a1 且 a+b1(D)a1 且 a+b110 (20

3、17 年) 甲、乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处图中,实线表示甲的速度曲线 v=v1(t)(单位:ms),虚线表示乙的速度曲线 v=v2(t),三块阴影部分面积的数值依次为 10,20,3计时开始后追上甲的时刻记为 t0(单位:s) ,则 (A)t 0=10(B) 15t 020(C) t0=25(D)t 02511 (2018 年) 设则( )(A)MNK(B) MKN(C) CK MN(D)KNM二、填空题12 (2002 年)13 (2004 年) 已知 f(ex)=xe-x,且 f(1)=0,则 f(x)=_14 (2007 年)15 (2010 年)16 (20

4、11 年) 曲线 的弧长 s=_17 (2012 年)18 (2013 年)19 (2015 年)20 (2018 年) 设函数 f(x)具有 2 阶连续导数若曲线 y=f(x)过点(0,0)且与曲线 y=2x在点(1 ,2) 处相切,则三、解答题解答应写出文字说明、证明过程或演算步骤。21 (2000 年) 设函数 f(x)在 0上连续且试证:在(0,)内至少存在两个不同的点 1 和 2,使 f(1)=f(2)=022 (2001 年) 求23 (2002 年) 已知两曲线 y=f(x)与 在点(00)处的切线相同,写出此切线方程并求极限23 (2003 年)过坐标原点作曲线 y=Inx 的

5、切线,该切线与曲线 y=lnx 及 x 轴围成平面图形 D24 求 D 的面积 A;25 求 D 绕直线 x=e 旋转一周所得旋转体的体积 V25 (2003 年)某建筑工地打地基时,需用汽锤将桩打进土层汽锤每次击打都将克服土层对桩的阻力而作功设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为 k,是 k0),汽锤第一次击打将桩打进地下 a m,根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0r1)问26 汽锤击打桩 3 次后,可将桩打进地下多深?27 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米)28 (2005 年) 如图,

6、曲线 C 的方程为 y=f(x),点(3,2)是它的一个拐点,直线 l1 与 l2分别是由线 C 在点(0,0)与(3,2)处的切线,其交点为(2,4)设函数 f(x)具有三阶连续导数,计算定积分 28 (2008 年)设 f(x)是连续函数 .29 利用定义证明函数 可导,且 F(x)=f(x);30 当 f(x)是以 2 为周期的周期函数时,证明函数也是以 2 为周期的周期函数。31 (2010 年)(I) 比较 与的大小,说明理由;()记求极限32 (2013 年) 计算 其中33 (2017 年) 求34 (2018 年) 求不定积分考研数学一(一元函数积分学)历年真题试卷汇编 3 答

7、案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 C【试题解析】 根据定积分的几何意义知, 则故应选(C) 也可用排除法:由定积分的几何意义知 也可利用 f(x)是奇函数,则为偶函数,从而 则(A)(B)(D)均不正确,故应选(C)【知识模块】 一元函数积分学2 【正确答案】 D【试题解析】 由题设知,当 x(一 1,0) 时 F(x)=f(x),而当 x(一 1,0)时 f(x)1 0。即 F(x)0,从而 F(x)单调增显然(A)选项是错误的,因为(A)选项中F(x)在( 一 1,0)中单调减 由于 则 F(0)=0,显然(C)选项错误 由于当 x(2

8、,3时 f(x)0,则当 x(2,3时 则(B)是错误的,(D) 是正确的【知识模块】 一元函数积分学3 【正确答案】 D【试题解析】 由于当 x0 时, 则同敛散,而则 收敛,故 收敛 由于则 同敛散 而 收敛,则 收敛 故对任意正整数m 和 n 积分 收敛,所以选 (D)【知识模块】 一元函数积分学4 【正确答案】 D【试题解析】 故应选(D)【知识模块】 一元函数积分学5 【正确答案】 B【试题解析】 当 时,sinxcosx1cotx,而 lnx 为单调增的函数,则 故应选(B)【知识模块】 一元函数积分学6 【正确答案】 D【试题解析】 本题主要考查定积分几何意义曲线 y=sinx

9、如图(a),而 ex2 在(0,+) 单调增且大于 1,则曲线 y=ex2sinx 如图(b) 该曲线与 x 轴围成三块域面积分别为 S1, S2,S 3,由定积分几何意义知 则 I 2I 1I 3 故应选(D)【知识模块】 一元函数积分学7 【正确答案】 A【试题解析】 解 1 令 则 a=0, 故应选(A) 解 2 由此可得,当 a=0,b=2 时积分值最小,故应选(A)解 3 傅里叶级数就是一种均方逼近,则使得 最小的 a 和 b 就是函数 f(x)=x的相应的傅里叶系数,即 a=a 1=0 故应选(A)【知识模块】 一元函数积分学8 【正确答案】 D【试题解析】 则 C1=一 1+C2

10、令 C1=C,则 C2=1+C 令 C=0,则故应选(D)【知识模块】 一元函数积分学9 【正确答案】 C【试题解析】 则 a1 时, 收敛; 则当 a+b1 时,收敛 故当 a1,a+b1 时, 收敛【知识模块】 一元函数积分学10 【正确答案】 C【试题解析】 由题设知,从一开始 t=0 到 t=t0 时刻甲、乙的位移分别为 其中 S1 在几何上表示曲线 v=v1(t),t=t0 及两坐标轴围成的面积,S 2 在几何上表示曲线 v=v2(t),t=t 0 及两个坐标轴围成的面积若 t0 为计时开始后甲追上乙的时刻,则 S 1=S2+10 即 由题中图形可知 t0=25。故应选(C)【知识模

11、块】 一元函数积分学11 【正确答案】 C【试题解析】 由不等式 ex 1+x(x0)可知 则 KMN,故应选 C【知识模块】 一元函数积分学二、填空题12 【正确答案】 1【试题解析】 【知识模块】 一元函数积分学13 【正确答案】 【试题解析】 令 ex=t,则 x=lnt,代入 f(ex)=xe-x 得 由 f(1)=0 知,C=0,故【知识模块】 一元函数积分学14 【正确答案】 【试题解析】 解 1 解 2 令 则 【知识模块】 一元函数积分学15 【正确答案】 一 4【试题解析】 令 则 x=t2,dx=2tdt 【知识模块】 一元函数积分学16 【正确答案】 【试题解析】 则 【

12、知识模块】 一元函数积分学17 【正确答案】 【试题解析】 解 1 由于 令 x一 1=sint,则 dt=costdt 解 2 由于 令 x 一 1=t,则 dx=dt, 【知识模块】 一元函数积分学18 【正确答案】 (ln2)【试题解析】 【知识模块】 一元函数积分学19 【正确答案】 【试题解析】 【知识模块】 一元函数积分学20 【正确答案】 2(ln21)【试题解析】 由曲线 y=f(x)过点(0,0) 且与曲线 y=2x 在点(1,2)处相切可知 f(0)=0, f(1)=2 则 【知识模块】 一元函数积分学三、解答题解答应写出文字说明、证明过程或演算步骤。21 【正确答案】 证

13、 1 令 则 F(0)=F(x)=0 又 所以存在 (0,),使 F()sin=0,因若不然,则在(0 ,) 内或 F(x)sinx 恒为正,或 F(x)sinx 恒为负,均与 矛盾但当 (0,)时,sin0,故 F()=0 由此证得 F(0)=F()=F()=0 (0) 再对 F(x)在0,和, 上分别应用罗尔中值定理,知至少存在 1(0,), 2(,),使 F( 1)=F(2)=0 即 f( 1)=f(2)=0 证 2 由 及 f(x)的连续性可知,存在1(0, ),使 f(1)=0因若不然,则在 (0,)内或 f(x)恒为正,或 f(x)恒为负,均与 矛盾 若在(0,)内 f(x)=0

14、仅有一个实根 x=1,则由推知,f(x)在(0 , 1)内与( 1,) 内异号,不妨设在 (0, 1)内 f(x)0,在( 1,)内 f(x)0于是再由及 cosx 在0,上的单调性知 得出矛盾从而推知,在(0,)内除 1 外,f(x)=0 至少还有另一实根 2,故知存在1, 2(0,), 12,使 f(1)=f(2)=0【试题解析】 构造函数 显然 F(x)=f(x)若能证明 F(x)在0, 上有三个零点,由罗尔定理可知在(0,)上至少存在两个不同的点 1, 2,使 F(1)=F(2)=0,即 f(1)=f(2)=0而 F(0)=0,F()=0,所以只要证在(0,)内至少还有 F(x)的一个

15、零点即可【知识模块】 一元函数积分学22 【正确答案】 解 1解 2 令ex=t,则 【知识模块】 一元函数积分学23 【正确答案】 由题设条件知,f(0)=0, 故所求切线方程为 y=x 【试题解析】 由两曲线 y=f(x)与 在点(0,0)处切线相同,可求得 f(0)和 f(0),然后用导数定义求极限【知识模块】 一元函数积分学【知识模块】 一元函数积分学24 【正确答案】 如图(a), 设切点横坐标为 x0,则曲线 lnx 在点(x 0,lnx 0)处的切线方程为 由该切线过原点知 lnx0 一 1=0,从而 x0=e,所以该切线方程为 所求图形 D 的面积为 【知识模块】 一元函数积分

16、学25 【正确答案】 解 1 切线 与 x 轴及直线 x=e 所围成三角形绕直线 x=e旋转所得的圆锥体体积为 曲线 y=lnx 与 x 轴及直线 x=e 所围成图形绕直线 x=e 旋转所得旋转体体积为 从而所求旋转体体积为 解 2 利用微元法,如图(b) 利用阴影部分窄带绕 x=e 旋转所得体积可得体积微元为 dV=(eey) 2 一(ee y)2dy =e2y2 一 2e2y+2eey 一 e2ydy 【知识模块】 一元函数积分学【知识模块】 一元函数积分学26 【正确答案】 设第 n 次击打后,桩被打进地下 xn,第 n 次击打时,汽锤所作的功为 Wn(n=1,2,3,)由题设,当桩被打

17、进地下的深度为 x 时,土层对桩的阻力大小为 kx,所以 由题设汽锤每次击打桩时所作的功与前次击打所作功之比为常数 r 知, W 2=rW1, W 3=rW2=r2W1 则前三次击打所作功总和为 W 1+W2+W3=W1+rW1+r2W1=(1+r+r2) ka2 又 从而有 则 即汽锤击打3 次后,可将桩打进地下【知识模块】 一元函数积分学27 【正确答案】 由归纳法可知 于是 【知识模块】 一元函数积分学28 【正确答案】 由(3,2)是曲线 y=f(x)的拐点知,f“(3)=0 ;由直线 l1 与 l2 分别是曲线 y=f(x)在点(0,0)与(3,2)处的切线知,f(0)=2 f(3)

18、=一 2f(0)=0,f(3)=2,利用分部积分法可得 【知识模块】 一元函数积分学【知识模块】 一元函数积分学29 【正确答案】 对任意的 x 由于 f 是连续函数,所以 其中 介于 x 与 x+x 之间 由 可知函数 F(x)在 x 处可导,且 F(x)=f(x)【知识模块】 一元函数积分学30 【正确答案】 证法 1 要证明 G(x)以 2 为周期,即要证明对任意的 x,都有G(x+2)=G(x),记 H(x)=G(x+2)一 G(x),则 又因为 所以H(x)=0,即 G(x+2)=G(x) 证法 2 由于 f 是以 2 为周期的连续函数,所以对任意的x,有 即 G(x)是以 2 为周期的周期函数【知识模块】 一元函数积分学31 【正确答案】 (I)当 0t1 时,N 为 ln(1+t)t,所以 |lnt|ln(1+t) ntn|lnt|,因此 ()由(I)知因为所以 从而【知识模块】 一元函数积分学32 【正确答案】 因为 所以且 f(1)=0从而 令 则 所以【知识模块】 一元函数积分学33 【正确答案】 【知识模块】 一元函数积分学34 【正确答案】 令 则 ex=1+t2, 【知识模块】 一元函数积分学

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1