1、考研数学三(线性代数)模拟试卷 5 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 A 是 mn 矩阵,B 是 nm 矩阵则(A)当 mn 时,必有行列式丨 AB 丨0.(B)当 mn 时,必有行列式丨 AB 丨=0(C)当 nm 时,必有行列式丨 AB 丨0(D)当 nm 时,必有行列式丨 AB 丨=0 2 设 n 维行向量 =(1/2, 0,,0,1/2),矩阵 A=E-T,B=E+2 T,其中 E 为 n 阶单位矩阵,则 AB=(A)0(B) -E(C) E(D)E+ T3 设 n 阶矩阵 A 非奇异(n2),A *是 A 的伴随矩阵,则(A)(A *)
2、*=丨 A 丨 n-1A(B) (A*)*=丨 A 丨 n+1A(C) (A*)*=丨 A 丨 n-2A(D)(A *)*=丨 A 丨 n+2A4 设 A 是任一 n(n3)阶方阵,A *是其伴随矩阵,又 k 为常数,且 k0,1,则必有(kA)*=(A)kA *(B) kn-1A*(C) knA*(D)k -1A*.5 设 A 为 n 阶非零矩阵,E 为 n 阶单位矩阵若 A3=0,则(A)E-A 不可逆, E+A 不可逆(B) E-A 不可逆,E+A 可逆(C) E-A 可逆,E+A 可逆(D)E-A 可逆, E+A 不可逆6 设 A,B,A+B,A -1+B-1 均为 n 阶可逆矩阵,则
3、(A -1+B-1)-1 等于(A)A -1+B-1(B) A+B(C) A(A+B)-1B(D)(A+B) -17 设 n 阶矩阵 A 与 B 等价,则必有(A)当丨 A 丨=a(a0)时,丨 B 丨=a(B)当丨 A 丨=a(a0)时,丨 B 丨=-a.(C)当丨 A 丨0 时,丨 B 丨=0(D)当丨 A 丨=0 时,丨 B 丨=0 8 设 A 为 n(n2)阶可逆矩阵,交换 A 的第 1 行与第 2 行得矩阵 B,A *,B *分别为A,B 的伴随矩阵,则(A)交换 A*的第 1 列与第 2 列得 B*(B)交换 A*的第 1 行与第 2 行得 B*(C)交换 A*的第 1 列与第 2
4、 列得-B *(D)交换 A*的第 l 行与第 2 行得-B *二、填空题9 设 A 为 3 阶矩阵,丨 A 丨=3,A *为 A 的伴随矩阵若交换 A 的第 1 行与第 2 行得矩阵 B,则丨 BA*丨=_.10 若 1, 2, 3, 1, 2 都是 4 维列向量,且 4 阶行列式丨 1, 2, 3, 1 丨=m,丨 1, 2, 2, 3 丨=n,则 4 阶行列式丨 3, 2, 1, 1+2 丨=_.11 设 1, 2, 3 均为 3 维列向量,记矩阵 A=( 1, 2, 3), B=(1+2+3, 1+22+43, 1+32+93). 如果丨 A 丨=1,那么丨 B 丨=_12 设 n 维
5、向量 =(a,0,0,a) T,a T, B=E+1/a T 其中 A 的逆矩阵为 B,则 a=_.13 设矩阵 A 满足 A2+A-4E=0,其中 E 为单位矩阵,则(A-E) -1=_.三、解答题解答应写出文字说明、证明过程或演算步骤。14 设 A 为 n 阶非零矩阵,A *是 A 的伴随矩阵,A T 是 A 的转置矩阵,当 A*=AT 时,证明丨 A 丨0考研数学三(线性代数)模拟试卷 5 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【知识模块】 线性代数2 【正确答案】 C【试题解析】 AB=(E- T)(E+2T) =E+2T-T-2T
6、T =E+T-2T(T) 故 AB=E+T-21/2T =E【知识模块】 线性代数3 【正确答案】 C【试题解析】 伴随矩阵的基本关系式为 AA*=A*A=丨 A 丨 E 现将 A*视为关系式中的矩阵 A,则有 A *(A*)*=丨 A*丨 E 那么,由丨 A*丨 =丨 A 丨 n-1 及(A *)-1 =A/丨 A 丨,可得 (A *)*-丨 A*丨(A *-1) = 丨 A 丨 n-1A/丨 A 丨 =丨 A 丨 n-2A【知识模块】 线性代数4 【正确答案】 B【试题解析】 对任何 n 阶矩阵都要成立的关系式,对特殊的 n 阶矩阵自然也要成立 那么,A 可逆时, A *=丨 A 丨 A-
7、1 有(kA) * =丨 kA 丨(kA) -1=kn 丨 A 丨 1/kA-1 =kn-1A 选(B)【知识模块】 线性代数5 【正确答案】 C【试题解析】 因为(E-A)(E+A+A 2)=E-A3=E, (E+A)(E-A+A 2)=E+A3=E 所以,由定义知 E-A,E+A 均可逆故选 (C)【知识模块】 线性代数6 【正确答案】 C【试题解析】 因为 A,B,A+B 均可逆,则有 (A -1+B-1)-1=(EA-1+B-1E)-1 =(B-1BA-1+B-1AA-1)-1=B-1(B+A)A-1-1 =(A-1)-1(B+A)-1(B-1)-1=A(A+B)-1B 故应选(C)
8、注意,一般情况下(A+B) -1A-1+B-1,不要与转置的性质相混淆【知识模块】 线性代数7 【正确答案】 D【知识模块】 线性代数8 【正确答案】 C【知识模块】 线性代数二、填空题9 【正确答案】 -27【试题解析】 A 两行互换得到 B,由行列式性质丨 A 丨=- 丨 B 丨,故 丨 BA*丨=丨 B*丨丨 A*丨=-丨 A 丨.丨 A 丨 2=-27【知识模块】 线性代数10 【正确答案】 n-m【试题解析】 利用行列式的性质,有 丨 3, 2, 1, 1+2 丨=丨 3, 2, 1, 1丨+丨 3, 2, 1, 2 丨 =-丨 1, 2, 3, 1 丨-丨 1, 2, 3, 2 丨
9、 =-m+丨1, 2, 2,3 丨 =n-m【知识模块】 线性代数11 【正确答案】 2【试题解析】 丨 B 丨= 丨 1+2+3, 1+22+43, 1+32+93 丨 = 丨1+2+3, 2+33, 2+53 丨 =丨 1+2+3, 2+33,2 3 丨 =2 丨1+2+3, 2+33, 3 丨 =2 丨 1+2, 2, 3 丨 =2 丨 1, 2, 3 丨 =2 丨 A 丨 =2【知识模块】 线性代数12 【正确答案】 -1【试题解析】 按可逆定义,有 AB=E,即 (E- T)(E+1/aT)=E+1/aT-T-1/aTT 由于 T=2a2,而 T 是秩为 1 的矩阵.【知识模块】 线
10、性代数13 【正确答案】 1/2(A+2E)【试题解析】 矩阵 A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞应当考虑用定 义法 因为 (A-E)(A+2E)-2E=A 2+A-4E=0 故 (A-E)(A+2E)=2E 按定义知 (A-E) -1=1/2(A+2E)【知识模块】 线性代数三、解答题解答应写出文字说明、证明过程或演算步骤。14 【正确答案】 若丨 A 丨=0,则 AAT=AA*=丨 A 丨 E=0 设 A 的行向量为ai(i=1,2,n) ,则 aiaiT=ai12+ai22+ain2=0(i=1,2,n) 于是ai=(ai1ai2,, ain)=0(i=1,2,n) 进而有 A=0,这与 A 是非零矩阵相矛盾故丨 A 丨0【知识模块】 线性代数
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1