ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:807.73KB ,
资源ID:940363      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-940363.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学一轮复习第三章导数及其应用3.2导数与函数的小综合课件文北师大版.pptx)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学一轮复习第三章导数及其应用3.2导数与函数的小综合课件文北师大版.pptx

1、3.2 导数与函数的小综合,-2-,知识梳理,考点自诊,1.导函数的符号和函数的单调性的关系 如果在某个区间内,函数y=f(x)的导数 ,则在这个区间上,函数y=f(x)是增加的; 如果在某个区间内,函数y=f(x)的导数f(x)0,则在这个区间上,函数f(x)是 的. 2.函数的极值与导数 (1)函数的极大值点和极大值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为 ,其函数值f(x0)为函数的 . (2)函数的极小值点和极小值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都 ,称点x0为函数y=f(x)的极小值点

2、,其函数值f(x0)为函数的 .,f(x)0,减少,函数y=f(x)的极大值点,极大值,大于x0点的函数值,极小值,-3-,知识梳理,考点自诊,(3)极值和极值点:极大值与极小值统称为 ,极大值点与极小值点统称为 . (4)求可导函数极值的步骤: 求f(x). 求方程 的根. 检查f(x)在方程f(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得 ;如果左负右正,那么f(x)在这个根处取得 .,极值,极值点,f(x)=0,极大值,极小值,-4-,知识梳理,考点自诊,3.实际问题中导数的意义 中学物理中,速度是 关于时间的导数,线密度是_的导数,功率是 的导数. 4.函数的

3、最值与导数 (1)最大值点:函数y=f(x)在区间a,b上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0).函数的最小值点也有类似的意义. (2)函数的最大值:最大值或者在 取得,或者在区间的端点取得. (3)最值:函数的 和 统称为最值. (4)求f(x)在a,b上的最大值和最小值的步骤 求f(x)在(a,b)内的极值; 将f(x)的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值.,路程,质量关于长度,功关于时间,极大值点,最大值 最小值,f(a),f(b),-5-,知识梳理,考点自诊,1.若函数f(x)的图像连续不断,则f(x)在a,b上一定有最值. 2.

4、若函数f(x)在a,b上是单调函数,则f(x)一定在区间端点处取得最值. 3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.,-6-,知识梳理,考点自诊,1.判断下列结论是否正确,正确的画“”,错误的画“”. (1)如果函数f(x)在(a,b)内是增加的,那么一定有f(x)0.( ) (2)函数在某区间上或定义域内的极大值是唯一的. ( ) (3)导数为零的点不一定是极值点. ( ) (4)函数的极大值不一定比极小值大. ( ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值. ( ),-7-,知识梳理,考点自诊,2.如图是函数y=f(x)的

5、导函数f(x)的图像,则下面判断正确的是 ( ) A.在区间(-2,1)内,f(x)是增加的 B.在区间(1,3)内,f(x)是减少的 C.在区间(4,5)内,f(x)是增加的 D.在区间(2,3)内,f(x)不是单调函数,C,3. 已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2 C.4 D.2,D,解析:f(x)=3x2-12=3(x+2)(x-2),令f(x)=0,得x=-2或x=2, 易得f(x)在(-2,2)内单调递减,在(-,-2),(2,+)内单调递增, 故f(x)极小值为f(2),由已知得a=2,故选D.,-8-,知识梳理,考点自诊,4.(2018

6、山东师大附中一模,11)若f(x)=- x2+mln x在(1,+)是减少的,则m的取值范围是( ) A.1,+) B.(1,+) C.(-,1 D.(-,1),C,x|x1或x-1,g(x)在R上为减函数,不等式等价于g(x2)1,得x1或x-1.,-9-,考点1,考点2,考点3,考点4,利用导数研究函数的单调性 例1(2018福建龙岩4月质检,21改编)已知函数 , mR,求函数f(x)的递增区间.,-10-,考点1,考点2,考点3,考点4,-11-,考点1,考点2,考点3,考点4,思考如何利用导数的方法讨论函数的单调性或求单调区间? 解题心得1.求f(x)的单调区间,要先确定函数的定义域

7、.再判断f(x)的正负.若f(x)不含参数,但又不好判断正负,将f(x)中正负不定的部分设为g(x),对g(x)再进行一次或二次求导,由g(x)的正负及g(x)的零点判断出g(x)的正负,进而得出f(x)的正负. 2.在求函数f(x)的单调区间时,若f(x)中含有参数不容易判断其正负时,需要对参数进行分类,分类的标准:(1)按导函数是否有零点分大类;(2)在小类中再按导函数零点的大小分小类;(3)在小类中再按零点是否在定义域中分类.,-12-,考点1,考点2,考点3,考点4,对点训练1(2018衡水中学金卷一模,21改编)已知函数f(x)=ax2ex (aR,e为自然对数的底数).当a0时,讨

8、论函数f(x)的单调性.,解 由题知,f(x)=2axex+ax2ex=aex(x2+2x)=aexx(x+2). 当a0时,令f(x)0,得x0.令f(x)0,得-20. 函数f(x)的递减区间为(-,-2),(0,+),递增区间为(-2,0).,-13-,考点1,考点2,考点3,考点4,函数单调性的应用(多考向) 考向1 利用函数单调性比较大小,思考本例题如何根据条件比较三个数的大小?,A,-14-,考点1,考点2,考点3,考点4,考向2 利用函数单调性求参数的范围 例3(1)(2018衡水中学押题二,11改编)若函数f(x)=mln x+x2-mx在区间(0,+)内递增,则正实数m的取值

9、范围为( ) A.0,8 B.(0,8 C.8,+) D.(8,+) (2)(2017江苏,11)已知函数 ,其中e是自然对数的底数.若f(a-1)+f(2a2)0,则实数a的取值范围是 .,B,-15-,考点1,考点2,考点3,考点4,-16-,考点1,考点2,考点3,考点4,思考如何利用函数的单调性求参数的范围? 解题心得1.比较大小时,根据三个数的特点结合已知条件构造新的函数,对新函数求导确定其单调性,再由单调性进行大小的比较. 2.利用函数的单调性求参数的范围问题要视情况而定,若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f(x)0(或f(x)0)恒成立问题

10、,从而构建不等式,要注意“=”是否可以取到;若已知函数不等式求参数范围,先求函数的导数,确定函数的单调性,再由函数的单调性脱掉函数符号得到关于参数的不等式,解不等式得参数范围;也可以根据条件采取分离参数法.,-17-,考点1,考点2,考点3,考点4,A,-18-,考点1,考点2,考点3,考点4,-19-,考点1,考点2,考点3,考点4,求函数的极值、最值 例4(1)(2017全国2,理11)若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则f(x)的极小值为( ) A.-1 B.-2e-3 C.5e-3 D.1 (2)(2018江苏,11)若函数f(x)=2x3-ax2+1(aR

11、)在(0,+)内有且只有一个零点,则f(x)在-1,1上的最大值与最小值的和为 .,A,-3,-20-,考点1,考点2,考点3,考点4,解析: (1)由题意可得, f(x)=(2x+a)ex-1+(x2+ax-1)ex-1=x2+(a+2)x+a-1ex-1. 因为x=-2是函数f(x)的极值点, 所以f(-2)=0.所以a=-1. 所以f(x)=(x2-x-1)ex-1. 所以f(x)=(x2+x-2)ex-1. 令f(x)=0,解得x1=-2,x2=1. 当x变化时,f(x),f(x)的变化情况如下表:,所以当x=1时,f(x)有极小值,并且极小值为f(1)=(1-1-1)e1-1=-1,

12、 故选A.,-21-,考点1,考点2,考点3,考点4,-22-,考点1,考点2,考点3,考点4,思考函数的导数与函数的极值、最值有怎样的关系? 解题心得1.可导函数y=f(x)在点x0处取得极值的充要条件是f(x0)=0,且在x0左侧与右侧f(x)的符号不同. 2.若函数y=f(x)在区间(a,b)内有极值,则函数y=f(x)在(a,b)内不是单调函数,反之,若函数y=f(x)在某区间上是单调函数,则函数y=f(x)在此区间上一定没有极值.,-23-,考点1,考点2,考点3,考点4,3.利用导数研究函数极值的一般流程:,-24-,考点1,考点2,考点3,考点4,4.求函数f(x)在a,b上的最

13、大值和最小值的步骤: (1)求函数在(a,b)内的极值. (2)求函数在区间端点处的函数值f(a),f(b). (3)将函数f(x)的极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.,-25-,考点1,考点2,考点3,考点4,ln a,D,当a0时,f(x)0,f(x)为R上的增函数,f(x)无极值. 当a0时,令f(x)=0,得ex=a,即x=ln a. x(-,ln a)时,f(x)0, f(x)在(-,ln a)上递减,在(ln a,+)上递增, 故f(x)在x=ln a处取得极小值,且极小值为f(ln a)=ln a.,-26-,考点1,考点2,考点3,考点4

14、,-27-,考点1,考点2,考点3,考点4,已知极值或最值求参数范围 例5若函数f(x)=ax3+(a-1)x2-x+2(0x1)在x=1处取得最小值,则实数a的取值范围是( ),C,-28-,考点1,考点2,考点3,考点4,思考已知极值或最值如何求参数的范围? 解题心得已知极值求参数:若函数f(x)在点(x0,y0)处取得极值,则f(x0)=0,且在该点左、右两侧的导数值符号相反.,-29-,考点1,考点2,考点3,考点4,D,-30-,考点1,考点2,考点3,考点4,1.函数y=f(x)在(a,b)内可导,f(x)在(a,b)内的任意子区间内都不恒等于零,则f(x)0f(x)在(a,b)内

15、是增加的;f(x)0f(x)在(a,b)内是减少的. 2.求可导函数极值的步骤: (1)求定义域及f(x); (2)求f(x)=0的根; (3)判定定义域内的根两侧导数的符号; (4)下结论. 3.求函数f(x)在区间a,b上的最大值与最小值,首先求出各极值及区间端点处的函数值,然后比较其大小,得结论(最大的就是最大值,最小的就是最小值).,-31-,考点1,考点2,考点3,考点4,1.注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. 2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. 3.一个函数在其定义域内的最值是唯一的,最值可以在区间的端点处取得. 4.解题时,要注意区分求单调性和已知单调性求参数的问题,处理好当f(x)=0时的情况,正确区分极值点和导数为0的点.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1