ImageVerifierCode 换一换
格式:PPT , 页数:25 ,大小:1.43MB ,
资源ID:952326      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-952326.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019春八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.3第1课时正方形的性质教学课件(新版)新人教版.ppt)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019春八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.3第1课时正方形的性质教学课件(新版)新人教版.ppt

1、18.2.3 正方形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,学练优八年级数学下(RJ)教学课件,第1课时 正方形的性质,1.理解正方形的概念. 2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.(重点、难点) 3.会应用正方形的性质解决相关证明及计算问题.(难点),导入新课,观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,矩 形,问题1:矩形怎样变化后就成了正方形呢?你有什么发现?,问题引入,正方形,问题2 菱形怎样变化后就成了正方形呢?你有什么发现?,正方形,邻边相等,矩形,正方形,菱

2、 形,一个角是直角,正方形,正方形定义:,有一组邻边相等并且有一个角是直角的平行四边形叫正方形.,归纳总结,已知:如图,四边形ABCD是正方形. 求证:正方形ABCD四边相等,四个角都是直角.,A,B,C,D,证明:四边形ABCD是正方形.A=90, AB=AC (正方形的定义). 又正方形是平行四边形.正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义).A=B =C =D = 90,AB= BC=CD=AD.,证一证,已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,ACBD.,A,B,C,D,O,证明:正方形ABCD是矩形, AO=BO=C

3、O=DO.正方形ABCD是菱形.ACBD.,思考 请同学们拿出准备好的正方形纸片,折一折,观察并思考. 正方形是不是轴对称图形?如果是,那么对称轴有几条?,对称性: . 对称轴: .,轴对称图形,4条,A,B,C,D,矩形,菱形,正 方 形,平行四边形,正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.,平行四边形、矩形、菱形、正方形之间关系:,性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分.,归纳总结,例1 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.,已知: 如图,四边形ABCD是正方形

4、,对角线AC、BD相 交于点O.,求证: ABO、 BCO、 CDO、 DAO是全等的等腰直角三角形.,证明: 四边形ABCD是正方形, AC=BD,ACBD,AO=BO=CO=DO. ABO、 BCO、 CDO、 DAO都 是等腰直角三角形,并且 ABO BCO CDO DAO.,典例精析,例2 如图,在正方形ABCD中, BEC是等边三角形, 求证: EADEDA15 .,证明: BEC是等边三角形, BE=CE=BC,EBC=ECB=60, 四边形ABCD是正方形, AB=BC=CD,ABC=DCB=90, AB=BE=CE=CD, ABE= DCE=30, ABE,DCE是等腰三角形,

5、 BAE= BEA= CDE= CED=75, EAD= EDA=90-75=15.,【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边ADE,求BEC的大小,解:当等边ADE在正方形ABCD外部时,如图,ABAE,BAE9060150. AEB15. 同理可得DEC15. BEC60151530;,当等边ADE在正方形ABCD内部时,如图, ABAE,BAE906030, AEB75. 同理可得DEC75. BEC360757560150. 综上所述,BEC的大小为30或150.,易错提醒:因为等边ADE与正方形ABCD有一条公共边,所以边相等本题分两种情况:等边ADE在正方形

6、的外部或在正方形的内部,【变式题2】 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD (1)求证:APBDPC;,解:四边形ABCD是正方形, ABC=DCB=90 PB=PC, PBC=PCB ABC-PBC=DCB-PCB, 即ABP=DCP 又AB=DC,PB=PC, APBDPC,证明:四边形ABCD是正方形, BAC=DAC=45 APBDPC, AP=DP 又AP=AB=AD, DP=AP=AD APD是等边三角形 DAP=60 PAC=DAP-DAC=15 BAP=BAC-PAC=30 BAP=2PAC,(2)求证:BAP=2PAC,例3 如图,在正方

7、形ABCD中,P为BD上一点,PEBC于E, PFDC于F.试说明:AP=EF.,解:,连接PC,AC.,又PEBC , PFDC,四边形ABCD是正方形,FCE=90, AC垂直平分BD,四边形PECF是矩形,PC=EF.,AP=PC.,AP=EF.,在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.,1.正方形具有而矩形不一定具有的性质是 ( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等,2.正方形具有而菱形不一定具有的性质( )A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相

8、等,B,D,练一练,3.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO2,求正方形的周长与面积,解:四边形ABCD是正方形, ACBD,OAOD2. 在RtAOD中,由勾股定理,得正方形的周长为4AD ,面积为AD28.,2.一个正方形的对角线长为2cm,则它的面积是 ( ) A.2cm2 B.4cm2 C.6cm2 D.8cm2,A,1.平行四边形、矩形、菱形、正方形都具有的是( )A对角线互相平分 B对角线互相垂直 C对角线相等 D对角线互相垂直且相等,A,当堂练习,3在正方形ABC中,ADB= ,DAC= , BOC= .4.在正方形ABCD中,E是对角线AC上一点,且A

9、E=AB,则EBC的度数是 .,45,90,22.5,第3题图,第4题图,45,5.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分BAC,EFAC,求BE的长,解:四边形ABCD为正方形, B90,ACB45,ABBC1cm. EFAC,EFAEFC90. 又ECF45, EFC是等腰直角三角形,EFFC. BAEFAE,BEFA90,AEAE, ABEAFE, ABAF1cm,BEEF. FCBE. 在RtABC中, FCACAF( 1)cm, BE( 1)cm,6. 如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.,解:BE=DF,且BEDF.理由如下: 四边形ABCD是正方形. BC=DC,BCE =90 . DCF=180-BCE=90. BCE=DCF. 又CE=CF. BCEDCF. BE=DF.,A,B,D,C,F,E,延长BE交DE于点M, BCEDCF , CBE =CDF. DCF =90 , CDF +F =90, CBE+F=90 , BMF=90. BEDF.,A,B,D,F,E,C,M,课堂小结,1.四个角都是直角,2.四条边都相等,3.对角线相等且互相垂直平分,正方形的性质,性质,定义,有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1