ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:839.50KB ,
资源ID:953741      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-953741.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年春八年级数学下册第1章三角形的证明1.1等腰三角形第2课时等边三角形的性质课件(新版)北师大版.ppt)为本站会员(livefirmly316)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年春八年级数学下册第1章三角形的证明1.1等腰三角形第2课时等边三角形的性质课件(新版)北师大版.ppt

1、1.1 等腰三角形,第一章 三角形的证明,第2课时 等边三角形的性质,学习目标,1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质; 2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点),在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.,思考:在上一节课我们证明等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?,导入新课,情境引入,讲授新课,上节课我们证明了等腰三角形的“三线合一”,试猜想等腰三角形的两底角的角平分线、两腰上的高、两腰上的中线有什么关系呢

2、?,猜想:底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等.,你能证明你的猜想吗?,例1 证明:等腰三角形两底角的平分线相等,A,C,B,E,已知:,求证:,BD=CE.,如图, 在ABC中, AB=AC, BD和CE是ABC的角平分线,1,2,猜想证明,2= ACB(已知),AB=AC(已知), ABC=ACB(等边对等角).,证明:,又1= ABC,,1=2(等式性质),在BDC与CEB中,,DCB= EBC(已知),,BC=CB(公共边),,1=2(已证),,BDCCEB(ASA),BD=CE(全等三角形的对应边相等),A,C,B,E,1,2,又CM= ,BN= ,,例2

3、 证明: 等腰三角形两腰上的中线相等,BM=CN,求证:,已知:如图,在ABC中,AB=AC,BM,CN是ABC两腰上的中线,证明:,AB=AC(已知),ABC=ACB.,CM=BN 在BMC与CNB中,, BC=CB,MCB=NBC, CM=BN,,BMCCNB(SAS),BM=CN.,例3 证明: 等腰三角形两腰上的高相等,BP=CQ,求证:,已知:如图,在ABC中,AB=AC,BP,CQ是 ABC两腰上的高,证明:,AB=AC(已知),ABC=ACB.,在BMC与CNB中,, BC=CB,QBC=PCB, BQC=CPB,,BQCCPB(SAS),BP=CQ.,还有其他的结论吗?,1.已

4、知:如图,在ABC中,AB=AC. (1)如果ABD= ABC , ACE= ACB, 那么BD=CE吗? 为什么?,(2)如果ABD= ABC , ACE= ACB 呢?,由此你能得到一个什么结论?,议一议:,过底边的端点且与底边夹角相等的两线段相等.,BD=CE,BD=CE,BD=CE,2.已知:如图,在ABC中,AB=AC. (1)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD=CE,(2)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD=CE,由此你能得到一个什么结论?,(3)如果AD= AC,AE= AB, 那么BD=CE吗? 为什么?,BD

5、=CE,两腰上距顶点等距的两点与底边顶点的连线段相等.,这里是一个由特殊结论归纳出一般结论的一种数学思想方法.,想一想:等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征呢?,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,可以利用等腰三角形的性质进行证明.,怎样证明这一定理了?,定理证明,已知:如图,在ABC中, AB=AC=BC 求证:A=B=C=60,证明:在ABC中, AB=AC(已知), B=C(等边对等角). 同理A=B 又A+B+C=180(三角形的内角和等于180), A=B=C=60,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,例4:如图

6、,等边三角形ABC中,BD是AC边上的中线,BD=BE,求EDA的度数.,解:, ABC是等边三角形,,CBA=60.,BD是AC边上的中线,,BDA=90, DBA=30., BD=BE,, BDE=(180 DBA) 2 =(18030) 2=75., EDA=90 BDE=9075=15.,当堂练习,1.如图,ABC和ADE都是等边三角形,已ABC的周长为18cm,EC =2cm,则ADE的周长是 cm.,12,2.如图所示,ACM和BCN都为等边三角形,连接AN、BM,求证:AN=BM.,证明: ACM和BCN都为等边三角形, 1360, 123 2, 即ACNMCB. CACM,CB

7、CN, CANCMB(SAS), ANBM.,3.如图,A、O、D三点共线,OAB和OCD是两个全等的等边三角形,求AEB的大小.,解:,OAB和OCD是两个全等的等边三角形.,AO=BO,CO=DO, AOB=COD=60., A、O、D三点共线,, DOB=COA=120,, COA DOB(SAS)., DBO=CAO.,设OB与EA相交于点F, EFB=AFO,, AEB=AOB=60.,F,变式:如图,若把“两个全等的等边三角形”换成“不全等的两个等边三角形”,其余条件不变,你还能求出AEB的大小吗?,方法与前面相同,AEB=60.,课堂小结,等腰三角形两底角上的平分线、两腰上的高、两腰上的中线的相关性质: 底角的两条平分线相等; 两条腰上的中线相等; 两条腰上的高线相等.,定理: 等边三角形的三个内角都相等,并且每个角都等于60.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1