ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:1.76MB ,
资源ID:953756      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-953756.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019春八年级数学下册第十七章勾股定理17.2勾股定理的逆定理第1课时勾股定理的逆定理教学课件(新版)新人教版.ppt)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019春八年级数学下册第十七章勾股定理17.2勾股定理的逆定理第1课时勾股定理的逆定理教学课件(新版)新人教版.ppt

1、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,八年级数学下(RJ)教学课件,第1课时 勾股定理的逆定理,1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点) 2.能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.(难点),导入新课,问题1 勾股定理的内容是什么?,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,b,c,a,问题2 求以线段a、b为直角边的直角三角形的斜边c的长:, a3,b4; a2.5,b6; a4,b7.5.,c=5,c=6.5,c=8.5,复习引入,思考

2、 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?,同学们你们知道古埃及人用什么方法得到直角的吗?,打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.,情景引入,思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?,大禹治水,相传,我国古代的大禹在治水时也用了类似的方法确定直角.,讲授新课,下面有三组数分别是一个三角形的三边长a, b, c: 5,12,13; 7,24,25; 8,15,17. 问题 分别以

3、每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?,是,下面有三组数分别是一个三角形的三边长a, b, c: 5,12,13; 7,24,25; 8,15,17. 问题2 这三组数在数量关系上有什么相同点?, 5,12,13满足52+122=132, 7,24,25满足72+242=252, 8,15,17满足82+152=172.,问题3 古埃及人用来画直角的三边满足这个等式吗?,32+42=52,满足.,a2+b2=c2,我觉得这个猜想不准确,因为测量结果可能有误差.,我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.,问题3 据此你有什么猜想呢?,由上面几个例

4、子,我们猜想: 命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.,?,已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形,构造两直角边分别为a,b的RtABC,证一证:,证明:作RtABC,使C=90,AC=b,BC=a,,ABC ABC(SSS),,C= C=90 , 即ABC是直角三角形.,则,勾股定理的逆定理:,如果三角形的三边长a 、b 、c满足a2+b2=c2 那么这个三角形是直角三角形.,勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直

5、角三角形 ,最长边所对应的角为直角.,特别说明:,归纳总结,例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?,(1) a=15 , b=8 ,c=17;,解:(1)152+82=289,172=289,152+82=172, 根据勾股定理的逆定理,这个三角形是直角三角形, 且C是直角.,(2) a=13 ,b=14 ,c=15.,(2)132+142=365,152=225, 132+142152,不符合勾股定理的逆定理, 这个三角形不是直角三角形.,根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.,【变

6、式题1】若ABC的三边a,b,c满足 a:b: c=3:4:5,是判断ABC的形状.,解:设a=3k,b=4k,c=5k(k0), (3k)2+(4k)2=25k2,(5k)2=25k2, (3k)2+(4k)2=(5k)2, ABC是直角三角形,且C是直角.,已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.,【变式题2】(1)若ABC的三边a,b,c,且a+b=4,ab=1, c= ,试说明ABC是直角三角形.,解:a+b=4,ab=1, a2+b2=(a+b

7、)2-2ab=16-2=14. 又c2=14, a2+b2=c2, ABC是直角三角形.,(2) 若ABC的三边 a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断ABC的形状.,解: a2+b2+c2+50=6a+8b+10c, a26a+9+b28b+16+c210c+25=0.即 (a3)+ (b4)+ (c5)=0. a=3, b=4, c=5,即 a2+b2=c2.ABC是直角三角形.,例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE CB,试判断AF与EF的位置关系,并说明理由,解:AFEF.理由如下: 设正方形的边长为4a, 则ECa,BE

8、3a,CFDF2a. 在RtABE中,得AE2AB2BE216a29a225a2. 在RtCEF中,得EF2CE2CF2a24a25a2. 在RtADF中,得AF2AD2DF216a24a220a2. 在AEF中,AE2EF2AF2, AEF为直角三角形,且AE为斜边 AFE90,即AFEF.,练一练,1.下列各组线段中,能构成直角三角形的是( ) A2,3,4 B3,4,6 C5,12,13 D4,6,7,C,2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是 ( ) A4 B3 C2.5 D2.4,D,3.若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则

9、ABC是_.,等腰三角形或直角三角形,如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形. 满足a2+b2=c2的三个正整数,称为勾股数.,概念学习,常见勾股数:,3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.,勾股数拓展性质:,一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.,下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9C.0.3,0.4,0.5 D.52,122,132,A,方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方

10、是否等于其他两边的平方和即可.,练一练,命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,命题2 如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.,前面我们学习了两个命题,分别为:,命题1:,直角三角形,a2+b2=c2,命题2:,直角三角形,a2+b2=c2,题设,结论,它们是题设和结论正好相反的两个命题.,问题1 两个命题的条件和结论分别是什么?,问题2 两个命题的条件和结论有何联系?,一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆

11、定理.勾股定理与勾股定理的逆定理为互逆定理.,题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.,归纳总结,说出下列命题的逆命题,这些逆命题成立吗? (1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.,内错角相等,两条直线平行.,如果两个实数的绝对值相等,那么它们相等.,对应角相等的三角形全等 .,在角平分线上的点到角的两边距离相等.,成立,不成立,不成立,成立,练一练,当堂练习,1.下列各组数是勾股数的是 ( )A.3,4,7 B.5,12

12、,13 C.1.5,2,2.5 D.1,3,5,将直角三角形的三边长扩大同样的倍数,则得到 的三角形 ( ) A.是直角三角形 B.可能是锐角三角形 C.可能是钝角三角形 D.不可能是直角三角形,B,A,3.在ABC中,A, B, C的对边分别a,b,c. 若C- B= A,则ABC是直角三角形; 若c2=b2-a2,则ABC是直角三角形,且C=90; 若(c+a)(c-a)=b2,则ABC是直角三角形; 若A:B:C=5:2:3,则ABC是直角三角形. 以上命题中的假命题个数是( ) A.1个 B.2个 C.3个 D.4个,A,4.已知a、b、c是ABC三边的长,且满足关系式,则ABC的形状

13、是 _,等腰直角三角形,5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_cm;,12,(2)“等腰三角形两底角相等”的逆定理为_,有两个角相等的三角形是等腰三角形,6.已知ABC,AB=n-1,BC=2n,AC=n+1(n为大 于1的正整数).试问ABC是直角三角形吗?若是, 哪一条边所对的角是直角?请说明理由.,解:AB+BC=(n-1)+(2n)=n4 -2n+1+4n=n4 +2n+1=(n+1)=AC, ABC直角三角形,边AC所对的角是直角.,7.如图,在四边形ABCD中,AB=8,BC=6,AC=10, AD=CD= ,求四边形ABCD 的面积., ABC是直角三角形且B是直角., ADC是直角三角形且 D是直角,, S 四边形 ABCD=,课堂小结,勾股定理 的逆定理,内容,作用,从三边数量关系判定一个三角形是 否是直角形三角形.,如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.,注意,最长边不一定是c, C也不一定是直角.,勾股数一定是正整数,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1