,3,术,第,此方法既适用选择题、填空题,也适用于解答题,多在研究方程、不等式、函数、三角、解析几何中广泛应用,应用题型,在解答数学问题时,我们常把某个代数式看成一个新的未知数,或将某些变元用另一参变量的表达式来替换,以便将所求的式子变形,优化思考对象,让原来不醒目的条件,或隐含的信息显露出来,促使问题的实质明朗化,使非标准型问题标准化,从而便于我们将问题化繁为简、化难为易、化陌生为熟悉,从中找出解题思路这种通过换元改变式子形式来变换研究对象,将问题移至新对象的知识背景中去考查、探究解题思路的做法,就是设参换元法,也就是我们常说的换元法,方法概述,谢谢观看,