ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf

上传人:王申宇 文档编号:1242159 上传时间:2019-08-27 格式:PDF 页数:96 大小:3.42MB
下载 相关 举报
ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf_第1页
第1页 / 共96页
ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf_第2页
第2页 / 共96页
ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf_第3页
第3页 / 共96页
ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf_第4页
第4页 / 共96页
ANSI ANS 6 4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf_第5页
第5页 / 共96页
点击查看更多>>
资源描述

1、ANSI/ANS-6.4-2006nuclear analysis and designof concrete radiation shieldingfor nuclear power plantsANSI/ANS-6.4-2006REAFFIRMED August 4, 2016 ANSI/ANS-6.4-2006; R2016 This standard has been reviewed and reaffirmed with the recognition that it may reference other standards and documents that may have

2、 been superseded or withdrawn. The requirements of this document will be met by using the version of the standards and documents referenced herein. It is the responsibility of the user to review each of the references and to determine whether the use of the original references or more recent version

3、s is appropriate for the facility. Variations from the standards and documents referenced in this standard should be evaluated and documented. This standard does not necessarily reflect recent industry initiatives for risk informed decision-making or a graded approach to quality assurance. Users sho

4、uld consider the use of these industry initiatives in the application of this standard. ANSI/ANS-6.4-2006American National StandardNuclear Analysis and Design of ConcreteRadiation Shielding for Nuclear Power PlantsSecretariatAmerican Nuclear SocietyPrepared by theAmerican Nuclear SocietyStandards Co

5、mmitteeWorking Group ANS-6.4Published by theAmerican Nuclear Society555 North Kensington AvenueLa Grange Park, Illinois 60526 USAApproved September 29, 2006by theAmerican National Standards Institute, Inc.AmericanNationalStandardDesignation of this document as an American National Standard attests t

6、hatthe principles of openness and due process have been followed in the approvalprocedure and that a consensus of those directly and materially affected bythe standard has been achieved.This standard was developed under procedures of the Standards Committee ofthe American Nuclear Society; these proc

7、edures are accredited by the Amer-ican National Standards Institute, Inc., as meeting the criteria for AmericanNational Standards. The consensus committee that approved the standardwas balanced to ensure that competent, concerned, and varied interests havehad an opportunity to participate.An America

8、n National Standard is intended to aid industry, consumers, gov-ernmental agencies, and general interest groups. Its use is entirely voluntary.The existence of an American National Standard, in and of itself, does notpreclude anyone from manufacturing, marketing, purchasing, or using prod-ucts, proc

9、esses, or procedures not conforming to the standard.By publication of this standard, the American Nuclear Society does not insureanyone utilizing the standard against liability allegedly arising from or afterits use. The content of this standard reflects acceptable practice at the time ofits approva

10、l and publication. Changes, if any, occurring through developmentsin the state of the art, may be considered at the time that the standard issubjected to periodic review. It may be reaffirmed, revised, or withdrawn atany time in accordance with established procedures. Users of this standardare cauti

11、oned to determine the validity of copies in their possession and toestablish that they are of the latest issue.The American Nuclear Society accepts no responsibility for interpretations ofthis standard made by any individual or by any ad hoc group of individuals.Requests for interpretation should be

12、 sent to the Standards Department atSociety Headquarters. Action will be taken to provide appropriate response inaccordance with established procedures that ensure consensus on theinterpretation.Comments on this standard are encouraged and should be sent to SocietyHeadquarters.Published byAmerican N

13、uclear Society555 North Kensington AvenueLa Grange Park, Illinois 60526 USACopyright 2006 by American Nuclear Society. All rights reserved.Any part of this standard may be quoted. Credit lines should read “Extracted fromAmerican National Standard ANSI0ANS-6.4-2006 with permission of the publisher,th

14、e American Nuclear Society.” Reproduction prohibited under copyright conventionunless written permission is granted by the American Nuclear Society.Printed in the United States of AmericaForewordThis Foreword is not a part of American National Standard “Nuclear Analysis andDesign of Concrete Radiati

15、on Shielding for Nuclear Power Plants,” ANSI0ANS-6.4-2006.!The need for this standard was identified in mid-1972 by D. K. Trubey, thenchairman of SubcommitteeANS-6, Radiation Protection and Shielding. The then-existing standard, ANSI N101.6-1972, “Concrete Radiation Shields,” providedexcellent guida

16、nce on the construction of concrete radiation shielding structuresbut contained almost no information on shielding effectiveness or analysis. Thisstandard was first issued as ANSI0ANS-6.4-1977 N403!.After ANSI0ANS-6.4-1977 was issued, two significant events occurred that led tothe decision to revise

17、 the standard: ANSI N101.6-1972 was withdrawn by ANSI,and theAmerican Concrete InstituteACI!issued its standardACI 349-80, “CodeRequirements for Nuclear Safety Related Concrete Structures,” as well as theCommentary ACI 349R-80, which provided updated requirements with regard tothe construction aspec

18、ts of concrete shielding structures. The withdrawal ofANSI N101.6-1972; the guidance provided by ACI 349-80; and advances in theevolution of shielding methods, data, and applications led to the revision,ANSI0ANS-6.4-1985.Since that revision effort, advances in buildup factors prompted the revisionAN

19、SI0ANS-6.4-1997. Other advances, particularly with respect to transmissionand reflection of gamma rays and neutrons by concrete slabs, prompted thecurrent revision, ANSI0ANS-6.4-2006.This revised standard is meant to be a “guide to good practice” in the area ofconcrete shielding analysis and design.

20、 Recommendations are given where pos-sible, but more often the choice of analytical methods must be left to the discre-tion of the shielding engineer as appropriate to the particular job, whether it bea conceptual design or final construction drawing.This standard was revised by Working Group ANS-6.

21、4 of the American NuclearSociety, which had the following members at the time it prepared and approvedthis standard:R. E. Faw Chair!, IndividualR. J. Donahue, Lawrence Berkeley National LaboratoryC. C. Graham, AmerenUE Callaway PlantS. J. Haynes, Sandia National LaboratoriesT. M. Lloyd, EnergySoluti

22、onsJ. D. Olson, Black the word “should” is used to denote arecommendation; and the word “may” is usedto denote permission, neither a requirementnor a recommendation. To conform with thisstandard, all concrete shield analyses and de-signs shall be performed in accordance with itsrequirements, but not

23、 necessarily with itsrecommendations.2.2 Requirements2.2.1 Calculational methodsAny applicable method may be used by thedesigner in the analysis of shield effectiveness.The designer shall be aware, however, of anylimitations imposed by the method employed.Approximations shall be chosen such that the

24、attenuation afforded by the concrete shield isknown to be conservative with respect to thedesign objective. Conservatism may also be in-troduced by other means, such as the sourcestrength used or the radiation design dose rateoutside the shield; the concrete shield analysisneed not necessarily be in

25、herently conservative.2.2.2 DataSelection of material composition, density, crosssections, albedos, or other properties shall bemade such that calculational results are con-servative with respect to the design objectivesas measured by attenuation afforded by theshield.2.2.3 Operational environmentNu

26、clear heating shall be considered during thedetermination of the operating temperature andwater content of a concrete primary reactorshield and of any other concrete shields thatare exposed to an incident energy flux greaterthan 1010MeV0cm2s and that will operate at atemperature of 658C or greater.2

27、.2.4 PenetrationsAll penetration configurations in concrete shieldwalls shall be shown to provide adequate at-tenuation. This requirement shall be satisfiedby one of the following:1! analysis that follows the guidance ofSec. 8.4 of this standard;2! determination that the configuration issimilar to o

28、ne that is functioning properlyunder comparable conditions in an operatingnuclear facility;13! determination that the configuration issimilar to one that has been evaluated exper-imentally and found to be effective for theradiation levels under consideration;4! determination that the configuration i

29、ssimilar to one that has already been shownby analysis to be effective.2.2.5 ReflectionEach applicable reflection configuration shallbe reviewed to determine its effect on the de-sign radiation levels. See Sec. 8.5.3.!2.2.6 Quality assuranceThe quality assurance requirements of Ameri-can National St

30、andard “Quality Assurance Re-quirements for Nuclear Facility Applications,”ANSI0ASME NQA-1-2004 1#1!, Sections 3, 3S-1,and 3A-1, shall be followed. As a consequenceof these requirements, the shield designer shallreview the initial specification for concrete tobe used in shield walls and shall review

31、 anysubsequent changes to that specification. Theshield designer shall ensure the effectivenessof the shield wall based on the reviewed con-crete specification. In addition to the qualityassurance requirements of ANSI0ASME NQA-1-2004 1#, concrete shielding designed toprotect plant personnel should b

32、e tested inaccordance with American National Standard“Program for Testing Radiation Shields in LightWater Reactors LWR!,” ANSI0ANS-6.3.1-1987R1998!2#.2.3 Recommendations2.3.1 Calculational methodsThe following methods, listed in order of in-creasing complexity and sophistication, are suit-able for d

33、etermining the effectiveness of aconcrete shield wall: the point-kernel method;the one-dimensional 1-D!, two-dimensional 2-D!, or three-dimensional 3-D! discrete ordi-nates methods; and the Monte Carlo method,as described in Sec. 6. The following methods,listed in order of increasing complexity, are

34、suitable for determining the effects of a pen-etration in a concrete shield wall: the albedomethod, the single scatter method, and theMonte Carlo method, as described in Sec. 8.4.The following methods, listed in order of in-creasing complexity, are suitable for evaluat-ing the effects of reflection

35、from a surface: thealbedo method, the single scatter method, andthe Monte Carlo method, as described inSecs. 8.4 and 8.5. The adequacy of the methodused should be demonstrated for typical shieldapplications rather than for each shield. Thisadequacy should be documented and may bebased on comparison

36、with experiments, com-parison with field measurements, comparisonof varying levels of computational sophistica-tion, or other confirmatory comparisons.2.3.2 DataIn the analysis of a concrete primary reactorshield, a coupled neutrongamma-ray librarymay be employed, and the data library recom-mended i

37、n American National Standard “Neu-tron and Gamma-Ray Cross Sections for NuclearRadiation Protection Calculations for NuclearPower Plants,”ANSI0ANS-6.1.2-19993#, is sug-gested for use. The gamma-ray mass attenua-tion coefficients and buildup factors that aregiven inAmerican National Standard “Gamma-R

38、ay Attenuation Coefficients and BuildupFactors for Engineering Materials,”ANSI0ANS-6.4-3-1991 withdrawn 2001!4#, should beused.2!If the actual concrete density and thechemical composition are known, based on con-crete mix specifications or measurements oftest samples, they should be used. If the che

39、m-ical composition of an ordinary concrete is notknown, the composition of Type 04 concrete asspecified in Table 1 should be used.2.3.3 Other considerationsNeutron activation of trace elements should beconsidered. Rebar reinforcing steel! should beconsidered separately from the concrete in or-der to

40、 allow determination of the sources ofsecondary gamma rays.2.3.4 DocumentationA document summarizing the shield designshould be prepared at a suitable time in thedesign evaluation. Chapter 12 of the Final Safety1!Numbers in brackets refer to corresponding numbers in Sec. 9, “References.”2!Other data

41、 contained in this standard, including the data in the Appendices, may be used by the shielddesigner.American National Standard ANSI0ANS-6.4-20062Table1Typicalconcreteproperties5ConcretetypeOrdinary6#Ordinary7#MagnetiteBariteMagnetiteandsteelpunchingsLimoniteandsteelpunchingsSerpentine6#Designation0

42、304MBAMS2LSSCompositionofmixlb0yd3!Water330370340347373Cement875550940980525AggregateSandandgravel!Sandandgravel!4900magnetiteore!4980BaSO4ore!1900magnetiteore!4800punchings!1820limoniteore!4680punchings!2030serpentine!956sand!Densityofcuredconcretetheoretical!Ing0cm32.392.353.53a3.35a4.64a4.54a2.1a

43、Inlb0ft3151b148b220a212a290a283132aElementalcompositionofcuredconcreteg0cm3!Hinmix!0.020.0130.011a0.012a0.011a0.014a0.035aHinore!0.017Oinmix!0.1590.1030.087a0.097a0.090a0.091a1.126Oinoreandcement!0.9801.0681.0810.9460.5480.617Si0.3420.7420.0910.0350.0730.0670.460Ca0.5820.1940.2510.1680.2580.2610.150

44、C0.1180.002Na0.0400.009Mg0.0570.0060.0330.0040.0170.0070.297Al0.0850.1070.0830.0140.0480.0290.042S0.0070.0030.0050.361K0.0040.0450.0040.009Fe0.0030.0291.6760.1593.5123.420.068OtherNi:0.026,P:0.007Ti:0.192,V:0.011,Mn:0.007,Cr:0.006Ba:1.551Ti:0.074,V:0.003V:0.004Cr:0.002aConcreteinwhich50%ofthewaterad

45、dedtotheoriginalmixisretained.bMinimumacceptabledensity140lb0ft3.American National Standard ANSI0ANS-6.4-20063Analysis Report FSAR! may serve in lieu of aseparate document. However, if a separate doc-ument is prepared, the guidelines of Sec. 3 ofthis standard should be followed.3 Standards of docume

46、ntationDocumentation that summarizes the shield de-sign, and all related calculations, shall be pre-pared at a suitable time in the evolution of theshield design for quality control purposes andfor future reference. This documentation shouldinclude sections listed in Secs. 3.1 through 3.6of this sta

47、ndard.3.1 Shield design approachThis section should describe the approach usedin the design of the shielding, including appro-priate discussions of those portions of the shielddesign that are based on earlier designs oroperating experience.3.2 Shield design descriptionThis section should contain a d

48、etailed descrip-tion of the shield design, including major equip-ment locations and shielding arrangements, typeof concrete used, shielding thicknesses, majorsources of radiation to be shielded, and radia-tion zone designations throughout the plant.The results of analyses of radiation levels, withth

49、e shielding as described, should also be pre-sented either in this section or in a separatesection as described in Sec. 3.4. A discussionshould also be included that indicates the de-sign phase e.g., conceptual phase, preliminaryphase, etc.!upon which the present shield analy-ses are based.3.3 Methods of analysisThe methods of analysis used in design ofthe shielding should be described in generalterms with appropriate discussions of com-puter programs employed. Sufficient detailshould be included to provide for a basic un-derstanding of the the

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1