ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf

上传人:王申宇 文档编号:1242440 上传时间:2019-08-27 格式:PDF 页数:151 大小:1.77MB
下载 相关 举报
ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf_第1页
第1页 / 共151页
ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf_第2页
第2页 / 共151页
ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf_第3页
第3页 / 共151页
ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf_第4页
第4页 / 共151页
ANSI IEEE C37 99-2012 Guide for the Protection of Shunt Capacitor Banks.pdf_第5页
第5页 / 共151页
点击查看更多>>
资源描述

1、IEEE Guide for the Protection of Shunt Capacitor BanksSponsored by the Power System Relaying Committee IEEE 3 Park Avenue New York, NY 10016-5997 USA 8 March 2013 IEEE Power and Energy Society IEEE Std C37.99-2012(Revision ofIEEE Std C37.99-2000) IEEE Std C37.99TM-2012 (Revision of IEEE Std C37.99-2

2、000) IEEE Guide for the Protection of Shunt Capacitor Banks Sponsor Power System Relaying Committee of the IEEE Power and Energy Society Approved 5 December 2012 IEEE-SA Standards Board Approved 29 October 2014American National Standards InstituteAbstract: The protection of shunt power capacitor ban

3、ks and filter capacitor banks are discussed in this guide. The guidelines for reliable application of protection methods intended for use in many shunt capacitor bank designs are included. Also, a detailed explanation of the theory of unbalance protection principles is provided. Discussions on the p

4、rotection of pole-mounted capacitor banks on distribution circuits or capacitors connected to the terminals of rotating machines are not included as they are outside the scope of this standard. Keywords: bank configuration, externally fused, filter bank, fuseless, IEEE C37.99TM, internally fused, ov

5、ercurrent, overvoltage, relay, shunt capacitor bank, unbalance protection The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA Copyright 2013 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 8 March 2013.

6、 Printed in the United States of America. IEEE is a registered trademark in the U.S. Patent +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. iv Copyright 2013 IEEE. All rights reser

7、ved. Notice to users Laws and regulations Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsi

8、ble for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so. Copyrights This document is copyrighted by the IEE

9、E. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adopti

10、on by public authorities and private users, the IEEE does not waive any rights in copyright to this document. Updating of IEEE documents Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to

11、 time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition an

12、d whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http:/standards.ieee.org/index.html or contact the IEEE at the address listed previously. For more information about the IEEE Standards Association or the IEEE standards development

13、process, visit the IEEE-SA Website at http:/standards.ieee.org/index.html. Errata Errata, if any, for this and all other standards can be accessed at the following URL: http:/standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically. v Copyright 20

14、13 IEEE. All rights reserved. Patents Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent righ

15、ts in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website http:/standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submit

16、ter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses. Essential Patent Claims may exist for which a

17、 Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in conne

18、ction with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own respon

19、sibility. Further information may be obtained from the IEEE Standards Association. vi Copyright 2013 IEEE. All rights reserved. Participants At the time this guide was submitted to the IEEE-SA Standards Board for approval, the Protection of Shunt Capacitor Banks Working Group had the following membe

20、rship: Pratap G. Mysore, Chair Ilia Voloh, Vice Chair John Appleyard Oscar Bolado Sukumar Brahma Simon Chano Arvind Chaudhary Stephen Conrad Al Darlinton* Alla Deronja Paul Elkin Robert Frye William Gordon* John Harder* Bogdan Kasztenny Jeffrey Nelson* James OBrien Russ Patterson Bruce Pickett Jeff

21、Pope Mohindar Sachdev Sam Sambasivan Sinan Saygin* Gregory Sessler Charlie Sufana Richard Taylor Demetrios Tziouvararas Bob Wilson *Corresponding Members The following members of the individual balloting committee voted on this guide. Balloters may have voted for approval, disapproval, or abstention

22、. William Ackerman Satish Aggarwal Ali Al Awazi Steven Alexanderson John Appleyard G. Bartok Philip Beaumont Kenneth Behrendt Wallace Binder William Bloethe Chris Brooks Gustavo Brunello William Bush William Byrd Terry Chapman Arvind K. Chaudhary Stephen Conrad Jerry Corkran James Cornelison Randall

23、 Crellin Randall Cunico Gary Donner Michael Dood Randall Dotson Donald Dunn Ahmed Elneweihi Gary Engmann Dan Evans Rabiz Foda Marcel Fortin David Garrett Jeffrey Gilbert Mietek Glinkowski Jalal Gohari William Gordon James Graham Thomas Grebe Stephen Grier Randall Groves Daryl Hallmark John Harder Ti

24、mothy Hayden Roger Hedding Jeffrey Helzer Gary Heuston Gary Hoffman Gerald Johnson Bogdan Kasztenny Gael Kennedy Yuri Khersonsky James Kinney Joseph L. Koepfinger Boris Kogan Jim Kulchisky Chung-Yiu Lam Benjamin Lanz Greg Luri Bruce Mackie Michael Maytum Omar Mazzoni William McBride Kenneth Mcclenah

25、an Michael Mcdonald John Miller Brian Mugalian Adi Mulawarman Jerry Murphy R. Murphy Pratap G. Mysore Jeffrey Nelson Arthur Neubauer Michael S. Newman James Niemira Joe Nims Gary Nissen James OBrien Gearold O. H. Eidhin Ted Olsen Lorraine Padden Donald Parker Christopher Petrola Bruce Pickett Iulian

26、 Profir Michael Roberts Charles Rogers Thomas Rozek Mohindar Sachdev Steven Sano Bartien Sayogo Gregory Sessler Devki Sharma Gil Shultz James Smith Jerry Smith Joshua Smith Kevin Stephan Gary Stoedter Charles Sufana Michael Swearingen Richard Taylor Michael Thompson Demetrios Tziouvaras Joe Uchiyama

27、 Eric Udren John Vergis Ilia Voloh Kenneth White Phil Winston Larry Yonce Larry Young Jian Yu Luis Zambrano vii Copyright 2013 IEEE. All rights reserved. When the IEEE-SA Standards Board approved this guide on 5 December 2012, it had the following membership: Richard H. Hulett, Chair John Kulick, Vi

28、ce Chair Robert Grow, Past Chair Konstantinos Karachalios, Secretary Satish Aggarwal Masayuki Ariyoshi Peter Balma William Bartley Ted Burse Clint Chaplin Wael William Diab Jean-Philippe Faure Alexander Gelman Paul Houz Jim Hughes Young Kyun Kim Joseph L. Koepfinger* David J. Law Thomas Lee Hung Lin

29、g Oleg Logvinov Ted Olsen Gary Robinson Jon Walter Rosdahl Mike Seavey Yatin Trivedi Phil Winston Yu Yuan *Member Emeritus Also included are the following nonvoting IEEE-SA Standards Board liaisons: Richard DeBlasio, DOE Representative Michael Janezic, NIST Representative Don Messina IEEE Standards

30、Program Manager, Document Development Erin Spiewak IEEE Standards Program Manager, Technical Program Development viii Copyright 2013 IEEE. All rights reserved. Introduction This introduction is not part of IEEE Std C37.99-2012, IEEE Guide for the Protection of Shunt Capacitor Banks. IEEE Std C37.99-

31、2012 incorporates significant additions and changes since the last revision in 2000. These additions include the theory of unbalance protection methods, impedance measurement techniques, and settings examples as Annex E. Detailed discussion on grounding has now been reduced to address concerns relat

32、ed to protection, and the reader has been directed to refer to IEEE Std 1036TM-2010afor more details. This guide was revised by the shunt capacitor bank protection revision working group of the substations protection subcommittee of the Power Systems Relaying Committee of the IEEE Power and Energy S

33、ociety. aInformation on references can be found in Clause 2. ix Copyright 2013 IEEE. All rights reserved. Contents 1. Overview 1 1.1 Scope . 1 1.2 Purpose 1 2. Normative references 2 3. Definitions 3 4. Basic considerations . 5 4.1 Capacitor unit capabilities . 7 4.2 Capacitor unit connections 7 4.3

34、 Capacitor bank design 8 4.4 Overvoltage on remaining capacitor units . 10 5. Bank connections 11 5.1 Grounded wyeconnected banks . 12 5.2 Ungrounded wyeconnected banks . 13 5.3 Delta-connected banks . 14 5.4 H configuration 15 6. Other considerations . 15 6.1 Bank grounding . 15 6.2 Neutral groundi

35、ng 15 7. Introduction to bank and system protection 16 7.1 Bank protection 18 7.2 System protection 21 8. Unbalance relaying methods 27 8.1 Introduction . 27 8.2 Theory of unbalance protection methods . 28 8.3 General unbalance relay considerations. 41 8.4 Externally fused capacitor banks . 55 8.5 I

36、nternally fused capacitor banks 67 8.6 Fuseless capacitor banks 78 8.7 Unfused capacitor banks 84 9. Protection of capacitor filter banks . 89 9.1 Filter bank protection . 89 9.2 Multifrequency harmonic filter protection considerations . 93 9.3 Static var compensator (SVC) capacitor protection . 95

37、9.4 SVC filter protection . 96 10. Capacitor bank equipment considerations 97 10.1 Capacitor bank switching devices 97 10.2 Inrush control devices 99 10.3 Surge arresters 100 10.4 Voltage-sensing devices .100 10.5 Current-sensing devices 100 10.6 Transient currents .101 10.7 Control cables .107 x Co

38、pyright 2013 IEEE. All rights reserved. 11. System considerations .107 11.1 Resonance .107 11.2 Harmonics .109 11.3 Telephone interface 109 12. Commissioning, operation, and maintenance 110 12.1 Preparation for initial energizing 110 12.2 Response to alarm or lockout (trip) 112 13. Microprocessor-ba

39、sed control and protection schemes .113 Annex A (informative) Bibliography 114 Annex B (informative) Symbol denition .115 Annex C (informative) Equations for effect of inherent unbalances .117 Annex D (informative) Inrush current and frequency during capacitor bank switching .118 Annex E (informativ

40、e) Unbalance relay setting examples 120 1 Copyright 2013 IEEE. All rights reserved. IEEE Guide for the Protection of Shunt Capacitor Banks IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or environmental protection, or ensure against interference with or from ot

41、her devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations. This IEEE document is made available for use su

42、bject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE o

43、r viewed at http:/standards.ieee.org/IPR/disclaimers.html. 1. Overview 1.1 Scope This guide applies to the protection of shunt power capacitor banks and filter capacitor banks. Included are guidelines for reliable applications of protection methods intended for use in many shunt capacitor applicatio

44、ns and designs. The guide does not include the protection of pole-mounted capacitor banks on distribution circuits or capacitors connected to the terminals of rotating machines. 1.2 Purpose This guide has been prepared to assist protection engineers in the application of relays and other devices for

45、 the protection of shunt capacitor banks used in substations. It covers methods of protection for many commonly used shunt capacitor bank configurations including the latest protection techniques. Additionally, this guide covers the protection of filter capacitor banks and large extra-high-voltage (

46、EHV) shunt capacitor banks. IEEE Std C37.99-2012 IEEE Guide for the Protection of Shunt Capacitor Banks 2 Copyright 2013 IEEE. All rights reserved. 2. Normative references The following referenced document is indispensable for the application of this document (i.e., it must be understood and used, s

47、o each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies. ANSI C37.06, American Nationa

48、l Standard AC High-Voltage Circuit Breakers Rated on a Symmetrical Current BasisPreferred Ratings and Related Required Capabilities.1 IEEE Std 18TM, IEEE Standard for Shunt Power Capacitors.2,3IEEE Std 469TM, IEEE Recommended Practice for Voice-Frequency Electrical-Noise Tests of Distribution Transf

49、ormers. IEEE Std 525TM, IEEE Guide for the Design and Installation of Cable Systems in Substations. IEEE Std 1036TM, IEEE Guide for Application of Shunt Power Capacitors. IEEE Std 1143TM, IEEE Guide on Shielding Practice for Low Voltage Cables. IEEE Std 1531TM, IEEE Guide for Application and Specification of Harmonic Filters. IEEE Std C37.012TM, IEEE Application Guide for Capacitance Current Switching for AC High-Voltage Circuit Breakers. IEEE Std C37.04TM, IEEE Standard Rating Structure for AC High-Voltage Circuit Breakers. IEEE Std C37.2TM, IE

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
  • CSN 42 0672-9-1993 Aluminium alloys Determination of zirconium by the photometric method with xylenol orange《铝合金 二甲酚橙光度法测定锆 》.pdf CSN 42 0672-9-1993 Aluminium alloys Determination of zirconium by the photometric method with xylenol orange《铝合金 二甲酚橙光度法测定锆 》.pdf
  • CSN 42 0680 Cast 1-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of aluminum by the photometric method《锡 光度法测定铝》.pdf CSN 42 0680 Cast 1-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of aluminum by the photometric method《锡 光度法测定铝》.pdf
  • CSN 42 0680 Cast 11-1984 Chemical testing of non-ferrous metals and alloys Chemical analysis of puretin Determination of cadmium by the polarographic method and atomic absorption m.pdf CSN 42 0680 Cast 11-1984 Chemical testing of non-ferrous metals and alloys Chemical analysis of puretin Determination of cadmium by the polarographic method and atomic absorption m.pdf
  • CSN 42 0680 Cast 2-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of bismuth by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铋含量》.pdf CSN 42 0680 Cast 2-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of bismuth by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铋含量》.pdf
  • CSN 42 0680 Cast 3-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of iron by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铁含量》.pdf CSN 42 0680 Cast 3-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of iron by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铁含量》.pdf
  • CSN 42 0680 Cast 4-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of copper by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铜》.pdf CSN 42 0680 Cast 4-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of copper by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定铜》.pdf
  • CSN 42 0680 Cast 5-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of lead by the polarographic method and atomic absorption method《锡 极谱法和原子吸收法测定铅》.pdf CSN 42 0680 Cast 5-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of lead by the polarographic method and atomic absorption method《锡 极谱法和原子吸收法测定铅》.pdf
  • CSN 42 0680 Cast 6-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of antimony by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定锑含量》.pdf CSN 42 0680 Cast 6-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of antimony by the photometric method and atomic absorption method《锡 光度法和原子吸收法测定锑含量》.pdf
  • CSN 42 0680 Cast 7-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of arsenic by the photometric method《锡 光度法测定砷》.pdf CSN 42 0680 Cast 7-1986 Chemical analysis of non-ferrous metals and alloys Tin Determination of arsenic by the photometric method《锡 光度法测定砷》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1