ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf

上传人:arrownail386 文档编号:430922 上传时间:2018-11-11 格式:PDF 页数:42 大小:1.05MB
下载 相关 举报
ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf_第1页
第1页 / 共42页
ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf_第2页
第2页 / 共42页
ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf_第3页
第3页 / 共42页
ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf_第4页
第4页 / 共42页
ANSI ANS 2.29-2008 Probabilistic Seismic Hazards Analysis《地震危害可能性分析》.pdf_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、ANSI/ANS-2.29-2008probabilistic seismichazards analysisANSI/ANS-2.29-2008REAFFIRMED October 11, 2016 ANSI/ANS-2.29-2008; R2016 This standard has been reviewed and reaffirmed with the recognition that it may reference other standards and documents that may have been superseded or withdrawn. The requi

2、rements of this document will be met by using the version of the standards and documents referenced herein. It is the responsibility of the user to review each of the references and to determine whether the use of the original references or more recent versions is appropriate for the facility. Varia

3、tions from the standards and documents referenced in this standard should be evaluated and documented. This standard does not necessarily reflect recent industry initiatives for risk informed decision-making or a graded approach to quality assurance. Users should consider the use of these industry i

4、nitiatives in the application of this standard. ANSI/ANS-2.29-2008American National StandardProbabilistic Seismic Hazards AnalysisSecretariatAmerican Nuclear SocietyPrepared by theAmerican Nuclear SocietyStandards CommitteeWorking Group ANS-2.29Published by theAmerican Nuclear Society555 North Kensi

5、ngton AvenueLa Grange Park, Illinois 60526 USAApproved July 31, 2008by theAmerican National Standards Institute, Inc.AmericanNationalStandardDesignation of this document as an American National Standard attests thatthe principles of openness and due process have been followed in the approvalprocedur

6、e and that a consensus of those directly and materially affected bythe standard has been achieved.This standard was developed under procedures of the Standards Committee ofthe American Nuclear Society; these procedures are accredited by the Amer-ican National Standards Institute, Inc., as meeting th

7、e criteria for AmericanNational Standards. The consensus committee that approved the standardwas balanced to ensure that competent, concerned, and varied interests havehad an opportunity to participate.An American National Standard is intended to aid industry, consumers, gov-ernmental agencies, and

8、general interest groups. Its use is entirely voluntary.The existence of an American National Standard, in and of itself, does notpreclude anyone from manufacturing, marketing, purchasing, or using prod-ucts, processes, or procedures not conforming to the standard.By publication of this standard, the

9、 American Nuclear Society does not insureanyone utilizing the standard against liability allegedly arising from or afterits use. The content of this standard reflects acceptable practice at the time ofits approval and publication. Changes, if any, occurring through developmentsin the state of the ar

10、t, may be considered at the time that the standard issubjected to periodic review. It may be reaffirmed, revised, or withdrawn atany time in accordance with established procedures. Users of this standardare cautioned to determine the validity of copies in their possession and toestablish that they a

11、re of the latest issue.The American Nuclear Society accepts no responsibility for interpretations ofthis standard made by any individual or by any ad hoc group of individuals.Requests for interpretation should be sent to the Standards Department atSociety Headquarters. Action will be taken to provid

12、e appropriate response inaccordance with established procedures that ensure consensus on theinterpretation.Comments on this standard are encouraged and should be sent to SocietyHeadquarters.Published byAmerican Nuclear Society555 North Kensington AvenueLa Grange Park, Illinois 60526 USACopyright 200

13、8 by American Nuclear Society. All rights reserved.Any part of this standard may be quoted. Credit lines should read “Extracted fromAmerican National Standard ANSI0ANS-2.29-2008 with permission of the publisher,the American Nuclear Society.” Reproduction prohibited under copyright conventionunless w

14、ritten permission is granted by the American Nuclear Society.Printed in the United States of AmericaForewordThis Foreword is not a part of the American National Standard “ProbabilisticSeismic Hazards Analysis,” ANSI0ANS-2.29-2008.!This standard establishes requirements for performing probabilistic s

15、eismic haz-ard analyses PSHAs!. It is one of a group of four standards that establishrequirements for the seismic design process for nuclear facilities. FigureA showsthe relationship between this standard and the other three seismic standards:American National Standards Institute0American Nuclear So

16、ciety ANSI0ANS-2.26-2004, “Categorization of Nuclear Facility Structures, Systems, and Compo-nents for Seismic Design”; ANSI0ANS-2.27-2008, “Criteria for Investigations ofNuclear Facility Sites for Seismic HazardAssessments”; andAmerican Society ofCivil Engineers0Structural Engineering Institute ASC

17、E0SEI 43-05, “Seismic De-sign Criteria for Structures, Systems, and Components in Nuclear Facilities.”The procedural relationship among these standards is further described inANSI0ANS-2.26-2004. The user should consult ASCE0SEI 43-05 to see how the infor-mation produced by ANSI0ANS-2.29-2008 is used

18、 in developing seismic loadsspecific to a structure, system, or component SSC!.As described in ANSI0ANS-2.26-2004 and ASCE0SEI 43-05, the seismic designprocess for nuclear facilities is based on the consequences of seismically initiatedfailure of SSCs and specified limit states and design requiremen

19、ts. The seismicdesign categories identified in ANSI0ANS-2.26-2004 and the design require-ments in ASCE0SEI 43-05 aim to satisfy target performance goals defined interms of the annual probability of exceeding specified SSC performance. AchievingFigure A Schematic showing the relationships of the seis

20、mic standardsia target performance goal is directly related to the probability of a seismic load.Therefore, the results of a PSHA are required as input to the seismic designprocess. ANSI0ANS-2.29-2008 establishes procedures for performing a PSHAneeded to support selection of the seismic loads used i

21、n ASCE0SEI 43-05. Themethods specified herein can also be used to support other applications, such asseismic probabilistic risk analyses.This standard might reference documents and other standards that have beensuperseded or withdrawn at the time the standard is applied. A statement hasbeen included

22、 in the reference section that provides guidance on the use ofreferences.The ANS-2.29 Working Group of the Standards Committee of the AmericanNuclear Society ANS! had the following membership:J. Savy Chair!, Risk Management Solutions, Inc.J. Ake, U.S. Nuclear Regulatory CommissionK. Campbell, EQECAT

23、, Inc.N. Chokshi, U.S. Nuclear Regulatory CommissionK. Coppersmith, Coppersmith ConsultingC. Costantino, IndividualC. B. Crouse, URS CorporationA. Hadjian, Defense Nuclear Facilities Safety BoardQ. Hossain, Lawrence Livermore National LaboratoryJ. Kimball, U.S. Department of EnergyJ. King, Individua

24、lR. Lee, IndividualM. McCann, JBA AssociatesM. Power, Geomatrix Consultants, Inc.G. Toro, Risk Engineering, Inc.I. Wong, URS CorporationR. Youngs, Geomatrix Consultants, Inc.This standard was prepared under the guidance of the Nuclear Facilities Stan-dards CommitteeNFSC! Subcommittee ANS-25Siting! o

25、f the ANS. At the timeof the ballot, Subcommittee ANS-25 was composed of the following members:Kevin Bryson Chair!, Shaw Environmental, Inc.J. Bollinger, Savannah River National LaboratoryC. Costantino, IndividualP. Fledderman, Westinghouse Savannah River CompanyD. Hang, University of Illinois-Urban

26、aK. L. Hanson, Geomatrix Consultants, Inc.J. Litehiser, Bechtel Corporation, Inc.S. Marsh, Southern California Edison CompanyD. Pittman, Tennessee Valley AuthorityJ. Savy, Risk Management Solutions, Inc.R. D. Spence, UT-Battelle, LLCJ. D. Stevenson, J.D. Stevenson nuclear material waste processing,s

27、torage, fabrication, and reprocessing facili-ties; uranium enrichment facilities; tritium pro-duction and handling facilities; radioactivematerial laboratories; and nuclear reactors. Cri-teria provided in this standard address variousaspects of conducting PSHAs, including1! selection of the process,

28、 the methodologyand the level of seismic hazard analysis ap-propriate for a given seismic design categorySDC!structure, system, or componentSSC!or facility hereafter, the SDC of a facility isconsidered synonymous with the highest SDCSSC in the facility! and the geotechnical andseismological characte

29、ristics of the site;2! seismic source characterization;3! ground motion estimation;4! site response assessment;5! assessment of aleatory and epistemic un-certainties in a PSHA;6! PSHA documentation requirements.This standard does not specify methods for es-timating the probability of fault displacem

30、ent,orotherseismicallyinducedhazardssuchassoilliquefaction, soil settlement, landsliding, andearthquake-inducedflooding.Thesehazardsmaybeapplicableforcertainsitesandneedtobeeval-uatedandincludedinSSCdesignrequirements.MethodsfordoingthisareincludedinAmericanSocietyofCivilEngineers0StructuralEngineer

31、-ing InstituteASCE0SEI 43-05, “Seismic DesignCriteria for Structures, Systems, and Compo-nents in Nuclear Facilities” 2#.This standard does not address criteria, proce-dures, or methods for collecting information anddata required to perform a PSHA. These arespecified in ANSI0ANS-2.27-2008, “Criteria

32、 forInvestigations of Nuclear Facility Sites for Seis-mic Hazard Assessments” 3#. In addition, thisstandard does not address the use of PSHAresults or the selection of design-basis earth-quakes for nuclear facilities. This topic is cov-ered in ANSI0ANS-2.26-2004 1# and ASCE0SEI 43-05 2#.The use of t

33、his standard shall be coordinatedwith the other three seismic standards namedabove. This coordination is vital to the collec-tion and evaluation of data required to performthe PSHA, to establish the level and scope ofthe analysis consistent with an application, andfor consistency with the intended u

34、se of thePSHA results.The guidelines and requirements provided inthis standard are applicable for the design andevaluation of SDC-3, SDC-4, and SDC-5 facili-ties. These can also be applied to SDC-1 andSDC-2, or other nonU.S. Department of En-ergy DOE! facilities if, for safety, economy, orother reas

35、ons, a site-specific seismic hazarddetermination becomes necessary.2 Acronyms and terms2.1 AcronymsANS: American Nuclear SocietyANSI: American National Standards Institute1!Numbers in brackets refer to corresponding numbers in Sec. 6, “References.”1ASCE/SEI:American Society of Civil Engineers0Struct

36、ural Engineering InstituteCEUS: Central and Eastern United StatesCFR: Code of Federal RegulationsDBE: design-basis earthquakeEPRI: Electric Power Research InstituteFS: Fourier amplitude spectrumHLR: high-level requirementsIBC: International Building CodeLHS: Latin hypercube samplingLLNL: Lawrence Li

37、vermore National Labora-toryMCE: maximum considered earthquakeM-D: magnitude-distanceNRC: U.S. Nuclear Regulatory CommissionPGA: peak ground accelerationPGD: peak ground displacementPGV: peak ground velocityPSD: power spectral densityPSHA: probabilistic seismic hazard analysisQA: quality assuranceSD

38、C: seismic design categorySSHAC: Senior Seismic Hazard AnalysisCommitteeSSC: structure, system, or componentTFI: technical facilitator integratorTI: technical integratorUHRS: uniform hazard response spectra2.2 Glossary of termsacceptable method: In many places, this stan-dard contains statements ind

39、icating that a cer-tain reference provides an “acceptable method”for satisfying the intent of a given require-ment. The plain meaning of such a statementis that the referenced method is one way tomeet the given requirement. The intent is to bepermissive, meaning that the analysis team canuse another

40、 method, if justified, without prej-udice. However, it is important to understandthat the intent of the standard goes beyond theplain meaning, as follows: Whenever the phras-ing “acceptable method” is used, the intent isthat if the analysis uses another method, theother method must satisfy the state

41、d require-ment with a comparable level of conservatismconsidering a similar level of details pertinentto the analysis scope. It is not acceptable to useanother method that does not satisfy the re-quirement at least as well as the acceptablemethod would satisfy it. Whenever an alterna-tive to the acc

42、eptable method is selected, it isunderstood that the peer review team will payparticular attention to this topic.aleatory variability: The variability inherentin a nondeterministic i.e., stochastic, random!phenomenon. Aleatory variability is accountedfor by modeling the phenomenon in terms of aproba

43、bility model. In principle, aleatory uncer-tainty cannot be reduced by the accumulationof more data or additional information, but thedetailed characteristics of the probability modelcan be improved. Sometimes aleatory variabil-ity is called “randomness.”area source: An area at the surface of theear

44、ths crust that is assumed to have experi-enced relatively uniform earthquake sourcecharacteristics for use in the PSHA. See also“volumetric source zone”.!background source zone:Apart of the earthscrust, usually of large surface area dimension,within which potentially damaging earth-quakes could occu

45、r that are not associated ei-ther with known fault sources or even with theuniform pattern, rate, or style of deformationor seismicity commonly identified with volu-metric seismic source zones. In PSHA calcula-tions, earthquakes that cannot be associatedwith other sources default to a backgroundsour

46、ce zone.Central and Eastern United States (CEUS):That portion of the United States east of theRocky Mountains approximately the 104thparallel!.deaggregation: Process used to determine thefractional contribution of each magnitude-distance M-D! pair or of each seismic sourcezone, to the total seismic

47、hazard. To accom-plish the M-D deaggregation, a set of bins ofmagnitude and distance pairs is selected, andthe annual probability of exceeding selectedground acceleration parameters from eachAmerican National Standard ANSI0ANS-2.29-20082M-D pair is computed and divided by the totalprobability of exc

48、eedence for all modeledearthquakes.epicenter: The point on the earths surfacedirectly above the focusi.e., hypocenter!of theearthquake source.epistemic uncertainty: Uncertainty attrib-utable to incomplete knowledge about a phe-nomenon that affects the ability to model it.Epistemic uncertainty is cap

49、tured by consider-ing a range of model parameters within a givenexpert interpretation or multiple expert inter-pretations and each of which is assigned anassociated weight representing statistical con-fidence in the alternatives. In principle, epi-stemic uncertainty can be reduced by theaccumulation of additional information associ-ated with the phenomenon. The uncertaintyin the parameters of the probability distribu-tion of a random phenomenon is epistemic.ground acceleration: Acceleration at theground surface produced by seismic waves. Typ-ically express

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1