1、Recommended Practice for CONTAINS API MONOGRAM ANNEX AS PART OFUS NATIONAL ADOPTION ISO 13503-2:2006 (Identical), Petroleum and natural gas industries Completion fluids and materials Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations Measurement
2、 of Properties of Proppants Used in Hydraulic Fracturing and Gravel-packing OperationsANSI/API RECOMMENDED PRACTICE 19C FIRST EDITION, MAY 2008 REAFFIRMED, JUNE 2016Special Notes API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state
3、, and federal laws and regulations should be reviewed. Neither API nor any of APIs employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information conta
4、ined herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors, consultants, or other assignees represent that use of this publication would not infring
5、e upon privately owned rights. API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this pu
6、blication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict. API publications are published to facilitate the broad availability of proven, soun
7、d engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from
8、 using any other practices. Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do i
9、n fact conform to the applicable API standard. All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publi
10、sher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005. Copyright 2008 American Petroleum Institute API ForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparat
11、us, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent. This document was produced under API standardization procedures that ensure appropriate notification and participation
12、in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, Ame
13、rican Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director. Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least ev
14、ery five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L
15、Street, N.W., Washington, D.C. 20005. Suggested revisions are invited and should be submitted to the Standards and Publications Department, API, 1220 L Street, NW, Washington, D.C. 20005, standardsapi.org. iii Contents Page Special Notes .i API Foreword ii Foreword .v Introductionvi 1 Scope1 2 Norma
16、tive references1 3 Abbreviations.1 4 Standard proppant sampling procedure.2 4.1 General .2 4.2 Particle segregation 2 4.3 Equipment 2 4.4 Number of required samples Bulk 5 4.5 Sampling Bulk material 6 4.6 Sampling Bagged material.6 5 Sample handling and storage 6 5.1 Sample reduction 6 5.2 Sample sp
17、litting.6 5.3 Sample and record retention and storage 6 6 Sieve analysis 7 6.1 Purpose 7 6.2 Description.7 6.3 Equipment and materials7 6.4 Procedure.7 6.5 Calculation of the mean diameter, median diameter and standard deviation 8 6.6 Sieve calibration 10 7 Proppant sphericity and roundness12 7.1 Pu
18、rpose 12 7.2 Description.13 7.3 Apparatus capability .13 7.4 Procedure.13 7.5 Alternate method for determining average sphericity and roundness14 8 Acid solubility 15 8.1 Purpose 15 8.2 Description.15 8.3 Equipment and materials15 8.4 Procedure.16 9 Turbidity test17 9.1 Purpose 17 9.2 Description.17
19、 9.3 Equipment and materials17 9.4 Equipment calibration.17 9.5 Procedure.18 10 Procedures for determining proppant bulk density, apparent density and absolute density 18 10.1 Purpose 18 10.2 Description.18 iv 10.3 Bulk density. 18 10.4 Apparent density. 21 10.5 Absolute density. 23 11 Proppant crus
20、h-resistance test. 23 11.1 Purpose 23 11.2 Description 24 11.3 Equipment and materials . 24 11.4 Sample preparation 24 11.5 Crush-resistance procedure 25 12 Loss on ignition of resin-coated proppant 27 12.1 Objective 27 12.2 Apparatus and materials 27 12.3 Loss-on-ignition procedure for whole-grain
21、proppant . 27 Annex A (informative) Formazin solution preparation . 29 Bibliography . 30 v Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried o
22、ut through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO c
23、ollaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International
24、 Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elemen
25、ts of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 13503-2 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, S
26、ubcommittee SC 3, Drilling and completion fluids, and well cements. ISO 13503 consists of the following parts, under the general title Petroleum and natural gas industries Completion fluids and materials: Part 1: Measurement of viscous properties of completion fluids Part 2: Measurement of propertie
27、s of proppants used in hydraulic fracturing and gravel-packing operations Part 3: Testing of heavy brines Part 4: Procedure for measuring stimulation and gravel-pack fluid leakoff under static conditions Part 5: Procedures for measuring the long-term conductivity of proppants vi Introduction This pa
28、rt of ISO 13503 is a compilation and modification of API RP 56 1, API RP 58 2and API RP 60 3. The procedures have been developed to improve the quality of proppants delivered to the well site. They are for use in evaluating certain physical properties used in hydraulic fracturing and gravel-packing
29、operations. These tests should enable users to compare the physical characteristics of various proppants tested under the described conditions and to select materials useful for hydraulic fracturing and gravel-packing operations. The procedures presented in this part of ISO 13503 are not intended to
30、 inhibit the development of new technology, material improvements or improved operational procedures. Qualified engineering analysis and judgment are required for their application to a specific situation. In this part of ISO 13503, where practical, US Customary (USC) units are included in brackets
31、for information. Annex A of this part of ISO 13503 is for information only. 1 Petroleum and natural gas industries Completion fluids and materials Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations 1 Scope This part of ISO 13503 provides standar
32、d testing procedures for evaluating proppants used in hydraulic fracturing and gravel-packing operations. NOTE “Proppants” mentioned henceforth in this part of ISO 13503 refer to sand, ceramic media, resin-coated proppants, gravel-packing media and other materials used for hydraulic fracturing and g
33、ravel-packing operations. The objective of this part of ISO 13503 is to provide a consistent methodology for testing performed on hydraulic fracturing and/or gravel-packing proppants. 2 Normative references The following referenced documents are indispensable for the application of this document. Fo
34、r dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ASTM E11, Standard Specification for Wire Cloth and Sieves for Testing Purposes 3 Abbreviations API American Petroleum Institute ASTM American
35、 Society for Testing and Materials ASG apparent specific gravity FTU formazin turbidity unit HCI hydrochloric acid HF hydrofluoric acid LOI loss on ignition NTU nephelometric turbidity unit 2 API Recommended Practice 19C/ISO 13503-2 4 Standard proppant sampling procedure 4.1 General Before any sampl
36、e is taken, consider what tests will be performed, as each test requires a different volume. It is very important that both the supplier and customer obtain the best representative sample possible. Unless the sample is truly representative of a total shipment or container, testing and correlation wi
37、th specifications/standards is very difficult. It is unlikely that sampling/testing methods in the field duplicate the producers system. The standard procedures included within this part of ISO 13503 are to assist in obtaining representative samples. However, there are inherent variations associated
38、 with sampling, testing equipment and the procedures that can lead to inconsistent results. A sample that is representative of a truckload 23 000 kg (50 700 lb) or a railcar load 90 000 kg (198 000 lb) can be an initial source of wide variation when making comparisons. All parties shall take care to
39、 insure uniform sampling. The customer and the supplier shall agree on sampling and testing methods/techniques. For the best representation, continuous sampling is ideal. Although many proppant suppliers utilize automatic sampling, it is usually impractical at the job site. If sampling is conducted
40、while unloading a container or at the site, consideration should be given to the number or frequency of samples. If bulk containers are filled from a flowing stream of proppant material, sampling procedures in accordance with 4.5 shall be applied. If bulk containers are filled using sacked proppant
41、material, sampling procedures in accordance with 4.6 shall be applied. 4.2 Particle segregation It is important to have a basic understanding of segregation when sampling proppant. Depending on the size, shape, distribution and mechanisms involved, there is usually a certain amount of error or varia
42、bility involved in sampling due to segregation. The sampling procedures described here are the result of much experience and are designed to minimize the effects of segregation of particles by size. Particles, such as proppants, naturally find the path of least resistance when moved or when force is
43、 applied. During transfer or movement, particles of differing size and mass naturally separate or segregate. The degree of segregation depends on the mechanisms involved in the transfer or movement. There are several forces, such as gravity, acting on a stream of particles as it flows. Within a movi
44、ng stream, fine particles drop through the voids or gaps and coarser particles move to the outside. The fine particles migrate and usually rest close to the area where they land. The heavier, coarser particles bounce or roll much further, stratifying the material by size. 4.3 Equipment The following
45、 equipment shall be used to compile representative proppant material samples. 4.3.1 Box sampling device, with a 13 mm (0.50 in) slot opening. The length of the 13 mm (0.50 in) slot shall be longer than the thickness of the stream being sampled. The volume of the sampler shall be large enough so as t
46、o not overflow while cutting through the entire stream. A box sampling device meeting these criteria is shown in Figure 1. 4.3.2 Sample reducer, of appropriate size for handling sack-size samples and reducing the material to 1/16 of the original mass; see Figure 2. 4.3.3 Sample splitter, of appropri
47、ate size; see Figure 3. Measurement of Properties of Proppants Used in Hydraulic Fracturing and Gravel-packing Operations 3 Dimensions in centimetres (inches) Key 1 sampler body, 15.9 20.9 6.35 (6.25 8.25 2.5) 3 pipe coupling 2 handle 4 sample opening, 1.27 (0.50) Figure 1 Box sampling device 4 API
48、Recommended Practice 19C/ISO 13503-2 Dimensions in centimetres (inches) Key 1 main body, 36.8 48.3 11.4 (14.5 19.0 4.5) 5 hopper, 36.8 24.1 15.2 (14.5 9.5 6.0) 2 splitter plate, 5.1 5.1 5.1 (2 2 2) 6 gate, 36.8 19.1 0.32 (14.5 7.5 0.125) 3 discharge plate, 36.8 30.5 0.32 (14.5 12 0.125) 7 hand knob,
49、 3.8 (1.5) diameter 4 discharge chute, 5.7 5.7 7.6 (2.25 2.25 3.0) 8 support stand assembly, 71.1 38.1 68.6 (28 15 27) Figure 2 Sample reducer Measurement of Properties of Proppants Used in Hydraulic Fracturing and Gravel-packing Operations 5 Dimensions in centimetres (inches) Key 1 main body, 29.2 27.9 16.5 (11.5 11.0 6.5) 2 handle 3 gate plate 4 hopper 5 pan 6 splitter vanes, 1.25 (0.5) Figure 3 Sample splitter 4.4 Number of required samples Bulk 4.4.1 Proppants for hydraulic