ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf

上传人:proposalcash356 文档编号:432341 上传时间:2018-11-11 格式:PDF 页数:8 大小:171.19KB
下载 相关 举报
ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf_第1页
第1页 / 共8页
ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf_第2页
第2页 / 共8页
ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf_第3页
第3页 / 共8页
ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf_第4页
第4页 / 共8页
ANSI ASTM D3382-2013 Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques《用桥接技术测量由部分放电(电晕)引起的能量.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、Designation: D3382 13Standard Test Methods forMeasurement of Energy and Integrated Charge Transfer Dueto Partial Discharges (Corona) Using Bridge Techniques1This standard is issued under the fixed designation D3382; the number immediately following the designation indicates the year oforiginal adopt

2、ion or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 These test methods cover two bridge techniques formeasuring the energy a

3、nd integrated charge of pulse andpseudoglow partial discharges:1.2 Test Method A makes use of capacitance and losscharacteristics such as measured by the transformer ratio-armbridge or the high-voltage Schering bridge (Test MethodsD150). Test Method A can be used to obtain the integratedcharge trans

4、fer and energy loss due to partial discharges in adielectric from the measured increase in capacitance and tan with voltage. (See also IEEE 286 and IEEE 1434)1.3 Test Method B makes use of a somewhat differentbridge circuit, identified as a charge-voltage-trace (parallelo-gram) technique, which indi

5、cates directly on an oscilloscopethe integrated charge transfer and the magnitude of the energyloss due to partial discharges.1.4 Both test methods are intended to supplement themeasurement and detection of pulse-type partial discharges ascovered by Test Method D1868, by measuring the sum of bothpul

6、se and pseudoglow discharges per cycle in terms of theircharge and energy.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine

7、 the applica-bility of regulatory limitations prior to use. Specific precautionstatements are given in Section 7.2. Referenced Documents2.1 ASTM Standards:2D150 Test Methods for AC Loss Characteristics and Permit-tivity (Dielectric Constant) of Solid Electrical InsulationD1711 Terminology Relating t

8、o Electrical InsulationD1868 Test Method for Detection and Measurement ofPartial Discharge (Corona) Pulses in Evaluation of Insu-lation Systems2.2 IEEE Documents3IEEE 286 Recommended Practice for Measurement ofPower Factor and Power Factor Tip-up for RotatingMachine Stator Coil InsulationIEEE 1434 G

9、uide to the Measurement of Partial Dischargesin Rotating MachineryIEEE C57.113 Guide for PD Measurements in Liquid-FilledPower TransformersIEEE Standard C57.124 Recommended Practice for theDetection of PD and the Measurement ofApparent Chargein Dry-Type Transformers2.3 AEIC Documents4AEIC T-24-380 G

10、uide for Partial Discharge ProcedureAEIC CS5-87 Specifications for Thermoplastic and Cross-linked Polyethylene Insulated Shielded Power CablesRated 5 through 35 kV, 9th Edition, 19873. Terminology3.1 Definitions:3.1.1 pseudoglow discharge, na type of partial discharge,which takes place within an exp

11、anded discharge channel and ischaracterized by pulses of relatively low magnitude and longrise time.3.1.1.1 DiscussionPseudoglow discharges occur within adiffused discharge channel, whose emitted glow fills the entireintervening gap or cavity space (1). The discharge rate behav-ior as a function of

12、applied voltage is similar to that of the rapidrise time pulse (spark-type) discharges. The successive pseudo-glow discharge pulses occur over the first quadrant of each halfcycle and in some gases, notably helium, their magnitude isfound to diminish to zero. At this point, a transition to apulseles

13、s glow discharge can occur. Its occurrence, which ismanifest by distortion in the sinusoidal voltage wave, is rare.1These test methods are under the jurisdiction of ASTM Committee D09 onElectrical and Electronic Insulating Materials and are the direct responsibility ofSubcommittee D09.12 on Electric

14、al Tests.Current edition approved Nov. 1, 2013. Published December 2013. Originallyapproved in 1975. Last previous edition approved in 2007 as D3382 07. DOI:10.1520/D3382-13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For

15、Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Institute of Electrical and Electronics Engineers, Inc. (IEEE),445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-1331, http:/www.ieee.org.4Available from The Association o

16、f Edison Illuminating Companies (AEIC),600 N. 18th St, Birmingham, AL 35291, www.aeic.org.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1At discharge inception of a sin

17、gle cavity, the pattern ofpseudoglow discharges consists of a single long rise timedischarge current pulse in each half-cycle. It has becomecommon practice to refer to this particular type of pattern asthat of a glow discharge.Pseudoglow partial discharges, which occur at low gaspressures, such as i

18、n insulating systems of electrical equipmentfor aerospace applications, have unduly long rise times and afrequency spectrum that falls bellow the bandwidth of conven-tional partial discharge pulse detectors (2). As a consequence,they cannot be detected by the partial discharge detectorsspecified in

19、Test Method D1868; however they can be detectedand measured by either MethodAor B ofTest Methods D3382.3.1.2 pulse discharge, na type of partial-discharge phe-nomenon characterized by a spark-type breakdown whichoccurs in a narrow constricted channel.3.1.2.1 DiscussionThe resultant detected pulse di

20、schargehas a short rise time and its Fourier frequency spectrum mayextend as far as 1 GHz. Such a pulse discharge may be readilydetected by conventional pulse detectors, that are generallydesigned for partial-discharge measurements within the fre-quency band from 30 kHz to several megahertz. (See al

21、soIEEE 1434, IEEE C57.113, IEEE C57.124, AEIC T-24-380,and AEIC CS5-87.)3.1.3 pulseless-glow discharge, nan uncommon type ofpartial discharge , whose existence is manifest not by the usualabrupt voltage fall discontinuities in the sinusoidal voltagewave at each discharge epoch but rather by distorti

22、ons in thewaveform.3.1.3.1 DiscussionIt is generally found that the pulselessglow region develops only when preceded by a pseudoglowdischarge in which the abrupt voltage collapse magnitudes ateach discharge have gradually diminished in the limit to zero.The nature of this pulseless glow region is no

23、t fullyunderstood, but it is believed to consist of a very weaklyionized gas volume. Further increases in the applied voltagecan lead to more complex partial discharge patterns, consistingof regions of pseudoglow, pulseless and pulse type discharges(3). Pulse type partial discharge detectors of the

24、type describedin Test Method D1868 cannot be employed to detect pulselessglow discharges.3.1.4 See (1) and (3) for more information on the previousdefinitions.3.1.5 For definitions of other terms pertaining to this stan-dard refer to Terminology D1711.3.2 Symbols:3.2.1 Refer to Annex A1 for symbols

25、for mathematicalterms used in this standard.4. Summary of Test Methods4.1 It is possible to represent the dielectric characteristics ofa specimen of solid insulating material by a parallel combina-tion of capacitance and conductance. The values of capacitanceand conductance remain practically consta

26、nt over the usefulrange of alternating voltage stress at a fixed frequency. If,however, the specimen contains gaseous inclusions (cavities),incremental increases in capacitance and conductance occur asthe voltage stress is raised above the value necessary to initiatepartial discharges in the cavitie

27、s. The energy loss in theincremental conductance is considered to be that dissipated bythe partial discharges.4.2 In Test Method A an initial measurement is made of thecapacitance and loss characteristic of the specimen at anapplied voltage below the discharge inception level. Thevoltage is then rai

28、sed to the specified test value and a secondmeasurement made.The energy loss due to partial discharges iscalculated from the results of the two measurements.4.3 In Test Method B a special bridge circuit is balanced ata voltage below the discharge inception level. The voltage isthen raised to the spe

29、cified test value, but the bridge is notrebalanced.Any unbalanced voltage at the detector terminals isdisplayed in conjunction with the test voltage on an oscillo-scope. The oscilloscope pattern approximates a parallelogram,the area of which is a measure of the energy loss due to partialdischarges.5

30、. Significance and Use5.1 These test methods are useful in research and qualitycontrol for evaluating insulating materials and systems sincethey provide for the measurement of charge transfer and energyloss due to partial discharges(4)(5)(6).5.2 Pulse measurements of partial discharges indicate them

31、agnitude of individual discharges. However, if there arenumerous discharges per cycle it is occasionally important toknow their charge sum, since this sum can be related to thetotal volume of internal gas spaces that are discharging, if it isassumed that the gas cavities are simple capacitances in s

32、erieswith the capacitances of the solid dielectrics (7)(8).5.3 Internal (cavity-type) discharges are mainly of the pulse(spark-type) with rapid rise times or the pseudoglow-type withlong rise times, depending upon the discharge governingparameters existing within the cavity. If the rise times of the

33、pseudoglow discharges are too long , they will evade detectionby pulse detectors as covered in Test Method D1868. However,both the pseudoglow discharges irrespective of the length oftheir rise time as well as pulseless glow can be readilymeasured either by Method A or B of Test Methods D3382.5.4 Pse

34、udoglow discharges have been observed to occur inair, particularly when a partially conducting surface is in-volved. It is possible that such partially conducting surfaceswill develop with polymers that are exposed to partial dis-charges for sufficiently long periods to accumulate acidicdegradation

35、products. Also in some applications, liketurbogenerators, where a low molecular weight gas such ashydrogen is used as a coolant, it is possible that pseudoglowdischarges will develop.6. Sources of Errors6.1 Surface DischargesAll discharges in the test specimenare measured, whether on the surface or

36、in internal cavities. Ifit is desired to measure only internal cavities, the otherdischarges must be avoided. In the case of an insulatedconductor with an outer electrode on the surface (such as acable or generator coil), the surface discharges at the end of thisouter electrode can be removed from t

37、he measurement with aD3382 132closely-spaced guard ring connected to ground. See Section 4of Test Methods D150.6.2 Since tests will be made at ionizing voltage, all connec-tions making up the complete high-voltage circuit should befree of corona to avoid measurement interference. See Section5 of Tes

38、t Method D1868.6.3 Anomalous changes in insulation losses with changes involtage stress can occur as a result of phenomena other thanpartial discharges. Such losses are a source of error in thesemethods, since they are indistinguishable from dischargelosses. However, these losses are often negligibl

39、e in compari-son with partial discharge losses.6.4 It is possible that any temperature change in the speci-men between the times at which the low-voltage and high-voltage measurements are taken will cause a change in thenormal losses and appear as changes in discharge energy, thuscausing an error in

40、 test results. This situation can be recognizedin Method B and corrective action taken (see 11.3).6.5 Paint used to grade potential on the surface of someinsulation specimens (for example, generator stator coil) shallnot be included in the measurement, since it is possible that theconductance of suc

41、h paints will change with voltage and affectthe accuracy of the method as a measure of discharge energy.It is sometimes possible to exclude the painted surfaces fromthe measuring circuit by the use of guarding or shieldingtechniques.7. Hazards7.1 Warning It is possible that lethal voltages will bepr

42、esent during this test. It is essential that the test apparatus,and all associated equipment potentially electrically connectedto it, be properly designed and installed for safe operation.Solidly ground all electrically conductive parts that any personmight come in contact with during the test. Prov

43、ide means foruse at the completion of any test to ground any parts which:were at high voltage during the test; have the potential to haveacquired an induced charge during the test; have the potentialto retain a charge even after disconnection of the voltagesource. Thoroughly instruct all operators i

44、n the proper way toconduct tests safely. When making high voltage tests, particu-larly in compressed gas or in oil, it is possible that the energyreleased at breakdown will be suffcient to result in fire,explosion, or rupture of the test chamber. Design of testequipment, test chambers, and test spec

45、imens shall be such asto minimize the possibility of such occurrences and to eliminatethe possibility of personal injury.7.2 Warning Ozone is a physiologically hazardous gas atelevated concentrations. The exposure limits are set by gov-ernmental agencies and are usually based upon recommenda-tions m

46、ade by the American Conference of GovernmentalIndustrial Hygienists.5Ozone is likely to be present whenevervoltages exist which are sufficient to cause partial, or complete,discharges in air or other atmospheres that contain oxygen.Ozone has a distinctive odor which is initially discernible atlow co

47、ncentrations but sustained inhalation of ozone can causetemporary loss of sensitivity to the scent of ozone. Because ofthis it is important to measure the concentration of ozone in theatmosphere, using commercially available monitoring devices,whenever the odor of ozone is persistently present or wh

48、enozone generating conditions continue. Use appropriate means,such as exhaust vents, to reduce ozone concentrations toacceptable levels in working areas.TEST METHOD A8. Procedure8.1 Conventional circuits for the measurement ofalternating-voltage capacitance and loss characteristics of in-sulation ca

49、n be used for this method. The transformer-ratioarmbridge shown in Fig. 1, or the Schering bridge shown inFig. X4.2 of Test Methods D150 are well suited to thisapplication.8.2 Energize the test specimen at a low voltage, V1, belowthe discharge-inception voltage, and measure capacitance Cx1and dissipation factor tan 1. Raise the voltage to a specifiedtest level, V2, and repeat the measurements for Cx2and tan 2.Calculate the power loss, P, in watts due to discharges atvoltage V2as follows:P 5 V22Cx2tan 22 Cx1tan 1! (1)5P22P1V22/V12!(2)8.3 The increment of dissipat

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1