ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf

上传人:explodesoak291 文档编号:432468 上传时间:2018-11-11 格式:PDF 页数:15 大小:467.72KB
下载 相关 举报
ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf_第1页
第1页 / 共15页
ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf_第2页
第2页 / 共15页
ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf_第3页
第3页 / 共15页
ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf_第4页
第4页 / 共15页
ANSI ASTM D7224-2014 Standard Test Method for Determining Water Separation Characteristics of Kerosine- Type Aviation Turbine Fuels Containing Additives by Portable Separometer.pdf_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、Designation: D7224 14 An American National StandardStandard Test Method forDetermining Water Separation Characteristics of Kerosine-Type Aviation Turbine Fuels Containing Additives byPortable Separometer1This standard is issued under the fixed designation D7224; the number immediately following the

2、designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis test method was devel

3、oped to satisfy three objectives: (1) Develop a test method that wouldrespond in the same manner as Test Method D3948 to strong surfactants, but not give lowmicro-separometer (MSEP) ratings to fuels containing weak surfactants (additives) that do not degradethe performance of commercial filter separ

4、ator elements; (2) Use filter media in the coalescer test thatwould be representative of the filtration media in commercial filter separator elements; and (3)Improve the precision of the test method compared to Test Method D3948.This test method was developed using material that is representative of

5、 coalescing materialscurrently used in commercial filter separator elements. The fiberglass coalescing material used in TestMethod D3948 was suitable for coalescing filters in use when that test method was developed, butdevelopments in coalescing elements in the intervening years have resulted in im

6、proved materials thatare not affected by weak surfactants. Test Method D3948 yields low results on some additized fuelsthat do not affect the performance of filter separators (coalescing filters) in actual service. Since thistest method was developed with material that is representative of the media

7、 used in current filterseparators, the results by this test method are more relevant to performance in current filter separators.1. Scope*1.1 This test method covers a rapid portable means for fieldand laboratory use to rate the ability of kerosine-type aviationturbine fuels, both neat and those con

8、taining additives, torelease entrained or emulsified water when passed throughfiberglass coalescing material.1.1.1 This test method is applicable to kerosine-type avia-tion turbine fuels including: Jet A and Jet A-1 (as described inSpecification D1655); JP-5, JP-7, JP-8, and JP-8+100. (SeeSection 6.

9、)1.2 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish ap

10、pro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specificwarning statements, see 8.2 8.5.2. Referenced Documents2.1 ASTM Standards:2D1655 Specification for Aviation Turbine FuelsD2550 Method of Test for Water Separation Characteristi

11、csof Aviation Turbine Fuels (Withdrawn 1989)3D3602 Test Method for Water Separation Characteristics ofAviation Turbine Fuels (Withdrawn 1994)3D3948 Test Method for Determining Water Separation Char-acteristics ofAviation Turbine Fuels by Portable Separom-eterD4306 Practice for Aviation Fuel Sample C

12、ontainers forTests Affected by Trace ContaminationD7261 Test Method for Determining Water Separation Char-acteristics of Diesel Fuels by Portable Separometer1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsi

13、bility ofSubcommittee D02.J0.05 on Fuel Cleanliness.Current edition approved Dec. 1, 2014. Published January 2015. Originallyapproved in 2005. Last previous edition approved in 2013 as D7224 13. DOI:10.1520/D7224-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM

14、 Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.*A Summary of Changes section appears at the end of this stan

15、dardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States12.2 Military Standards:4MIL-DTL-5624 Turbine Fuel, Aviation Grades JP-4, JP-5,and JP-5/JP- 8 STMIL-DTL-25524 Turbine Fuel, Aviation, Thermally StableMIL-DTL-38219 Turbine Fuels, Low

16、Volatility, JP-7MIL-DTL-83133 Turbine Fuel, Aviation, Kerosene Types,NATO F-34 (JP-8), NATO F-35, and JP-8+1003. Terminology3.1 For definitions of the terms used in this test method thatare not shown below, refer to Test Methods D3948 and D7261.3.2 Definitions:3.2.1 Micro-Separometer5rating (MSEP5ra

17、ting), nin theaviation fuel industry, a numerical value indicating the ease ofseparating emulsified water from aviation (jet) fuel by coales-cence as affected by the presence of surface active materials(also known as surface active agents or surfactants).3.2.1.1 DiscussionMSEP ratings are only valid

18、 within therange of 50 to 100, with ratings at the upper end of the rangeindicating a clean fuel with little or no contamination bysurfactants, which is expected to show good water-separatingproperties when passed through a filter-separator (coalescingtype filter) in actual service.3.2.2 reference f

19、luid, nin MSEP and DSEP5, diesel sepa-rability water separability tests, a reference fluid base towhich a prescribed quantity of a known surface active agenthas been added.3.2.2.1 DiscussionThe known surface active agent is typi-cally bis-2-ethylhexyl sodium sulfosuccinate, commonly re-ferred to as

20、AOT, dissolved in toluene.3.2.3 reference fluid base, nin aviation MSEP waterseparability tests, jet fuel that has been cleaned in a prescribedmanner to remove all surface-active contaminants (agents), andhaving a minimum MSEP rating of 97.3.2.4 surfactant, nin petroleum fuels, surface active ma-ter

21、ial (or surface active agent) that could disarm (deactivate)filter separator (coalescing) elements so that free water is notremoved from the fuel in actual service.3.2.4.1 DiscussionTechnically, surfactants affect the inter-facial tension between water and fuel which affects thetendency of water to

22、coalesce into droplets.3.2.5 strong surfactant, nin petroleum fuels, surface activematerial that disarms filter separator elements, allowing waterto pass.3.2.5.1 DiscussionStrong surfactants can be refinery pro-cess chemicals left in the fuel or contaminants introducedduring transportation of the fu

23、el.3.2.6 weak surfactant, nin petroleum fuels, surface activematerial, typically certain types of additives such as staticdissipator additive, that does not adversely affect the perfor-mance of filter separator elements in actual service.3.3 Definitions of Terms Specific to This Standard:3.3.1 MCell

24、6Coalescer, nreferring to a particular coalesc-ing filter element specifically designed for this test method.3.4 Abbreviations:3.4.1 AOTaerosol OT (see 8.1).3.4.2 DSEPdiesel separability.3.4.3 MSEPmicro-separometer.3.4.4 SDAstatic dissipator additive.4. Summary of Test Method4.1 A water/fuel sample

25、emulsion is created in a syringeusing a high-speed mixer. The emulsion is then expelled fromthe syringe at a programmed rate through a specific fiberglasscoalescer, the MCell Coalescer,6and the effluent is analyzedfor uncoalesced water (that is, dispersed water droplets) by alight transmission measu

26、rement. The Micro-Separometer in-strument has an effective range of 50-to-100 scaled to thenearest whole number. A test can be performed in 5 min to10 min.5. Significance and Use5.1 This test method provides a measurement of the pres-ence of surfactants in aviation turbine fuels. Like previousobsole

27、te Test Methods D2550 and D3602 and current TestMethod D3948, this test method can detect trace amounts ofrefinery treating chemicals in fuel. The test methods can alsodetect surface active substances added to fuel in the form ofadditives or picked up by the fuel during handling from pointof product

28、ion to point of use. Some of these substancesdegrade the ability of filter separators to separate free waterfrom the fuel.5.2 This test method yields approximately the same (low)MSEP ratings as Test Method D3948 for fuels that containstrong surfactants.5.2.1 This test method will give approximately

29、the sameMSEP ratings for Jet A, Jet A-1, JP-5, JP-7, and JP-8 fuels asTest Method D3948 when testing reference fluids.5.3 The MSEP ratings obtained by this test method are lessaffected by weak surfactants than Test Method D3948. Some-what higher MSEP ratings for Jet A, Jet A-1, JP-5, JP-7, andJP-8 f

30、uels are obtained by this test method than those obtainedby Test Method D3948 when additives such as static dissipateradditives (SDA) and corrosion inhibitors are present in thefuel. This correlates with the satisfactory performance of filterseparators for such fuels, when wet. However, these samead

31、ditives adversely affect the MSEP ratings obtained by TestMethod D3948 by erroneously indicating that such additizedfuels would significantly degrade the ability of filter separatorsto separate free water from the fuel in actual service.5.4 The Micro-Separometer instrument has an effectivemeasuremen

32、t range from 50 to 100. Values obtained outside ofthose limits are undefined and invalid.NOTE 1In the event a value greater than 100 is obtained, there is a4Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.5Atrademark o

33、f EMCEE Electronics, Inc., 520 CypressAve., Venice, FL 34285,www.emcee-.6A registered trademark of EMCEE Electronics, Inc., 520 Cypress Ave., Venice,FL 34285, www.emcee-.D7224 142good probability that light transmittance was reduced by material,typically water, contained in the fuel that was used to

34、 set the 100 referencelevel. During the coalescing portion of the test, the contaminating materialas well as the 50 L 6 1 L of distilled water was subsequently removedduring this portion of the test. Thus, the processed fuel had a higher lighttransmittance than the fuel sample used to obtain the 100

35、 reference levelresulting in the final rating measuring in excess of 100.6. Interferences6.1 Any suspended particles, whether solid or water drop-lets or haze, in a fuel sample will interfere with this testmethod, which utilizes light transmission of a fuel sample afteremulsification with water and

36、subsequent coalescence.7. Apparatus7.1 Micro-Separometer Instrument7is used to perform thetest. The unit is completely portable and self-contained, ca-pable of operating on an (optional) internal rechargeablebattery pack or being connected to an ac power source usingpower cords which are available f

37、or various voltages. Connec-tion to an ac power source will provide power to the unit andeffect battery recharge. The power cords, test accessories andoperators manual can be packed in the cover of the lockablecase.NOTE 2An extensive study was performed to verify that the Mark XMicro-Separometer ins

38、trument gives equivalent results to the Mark VDeluxe Micro-Separometer instrument. See Research Report RR:D02-1647.8NOTE 3The Mark X has a universal power supply and requires onlyone power cord as compared to the Mark V Deluxe that requires individualpower cords for different voltages.7.1.1 Review t

39、he Operating Manual of the Micro-Separometer instrument that is furnished with each unit (and isalso available from the manufacturers website) for operatinginstructions. The instrument is not field repairable. Also notethat this instrument is designed to perform a number ofdifferent functions in add

40、ition to this specific test method.7.1.2 The Micro-Separometer Mark V Deluxe and Mark Xinstruments and associated control panels are shown in Fig. 1and Fig. 2, respectively. The emulsifier is on the right side ofthe raised panel and the syringe drive mechanism is on the leftside. The control panel c

41、ontaining the operating controls ismounted on the fixed panel in the left side of the case. Table 1lists the manual and audio operating characteristics of theinstrument.7.1.3 All of the controls are located in a push-button arrayon the control panel. The push-buttons illuminate when de-pressed thus

42、indicating operational status. A circuit breakerlocated on the control panel provides protection for the acpower circuit.7.1.3.1 The Mark X has an LCD display on the controlpanel that provides information to the operator during the test.The information includes test status and an error code thatdefi

43、nes a malfunction in the Micro-Separometer instrument.7.1.4 The turbidimeter is located under the main controlpanel and consists of a well in which the sample vial is placed(in a specified orientation), a light source and a photocell.7.1.5 By depressing the ON push-button, the electroniccircuits are

44、 energized. The ON push-button pulses on and offwhen the instruments are being operated by an ac source andremains constantly on when the battery (dc) pack is used. Thelettered push-buttons will sequentially illuminate indicatingREADY operational status.NOTE 4Of the lettered (A-G) pushbuttons on the

45、 control panel of theMark V Deluxe, only the A pushbutton is applicable to this test method.Of the lettered (Jet A Diesel) pushbuttons on the control panel of theMark X, only the Jet A pushbutton is applicable to this test method.7.1.6 The RESET push-button can be depressed at any timeto cancel the

46、test in progress and restore the program to theinitial start mode. The lettered push-buttons commence tosequentially illuminate, thus indicating a READY operationalstatus enabling test mode selection.7.2 Mark V Operation:7.2.1 Depress the A push-button to select test Mode A. Thedepressed push-button

47、 and the START push-button will illu-minate.7.2.2 The START push-button, when depressed initially,initiates the CLEAN cycle causing the syringe drive mecha-nism to travel to the UP position and the emulsifier motor tooperate for the cleaning operation.7The sole source of supply of the apparatus, the

48、 Model 1140 Micro-SeparometerMark V Deluxe and Mark X instruments, known to the committee at this time isEMCEE Electronics, Inc., 520 Cypress Ave., Venice, FL 34285, www.emcee- . If you are aware of alternative suppliers, please provide thisinformation to ASTM International Headquarters. Your commen

49、ts will receivecareful consideration at a meeting of the responsible technical committee,1whichyou may attend.8Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1647.FIG. 1 Micro-Separometer Mark V Deluxe and Associated Control PanelD7224 1437.2.3 The START push-button, when depressed after thesecond CLEAN cycle initiates the automatic program sequencecausing the read indicator and the two ARROWED push-buttons to illuminate, indicating t

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1