ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf

上传人:ideacase155 文档编号:432578 上传时间:2018-11-11 格式:PDF 页数:18 大小:162.60KB
下载 相关 举报
ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf_第1页
第1页 / 共18页
ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf_第2页
第2页 / 共18页
ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf_第3页
第3页 / 共18页
ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf_第4页
第4页 / 共18页
ANSI ASTM E2026 REV A-2016 Standard Guide for Seismic Risk Assessment of Buildings.pdf_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、Designation: E2026 16a An American National StandardStandard Guide forSeismic Risk Assessment of Buildings1This standard is issued under the fixed designation E2026; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last

2、revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONLenders, insurers, and equity owners in real estate are giving more intense scrutiny to earthquakerisk than ever before. Th

3、e 1989 Loma Prieta, California earthquake, which caused more than $6 billionin damage, accelerated the trend toward considering loss estimation in real estate transactions. The1994 Northridge, California earthquake, with over $20 billion in damage, made seismic riskassessment an integral part of rea

4、l estate financial decision-making for regions at risk of damagingearthquakes. Users of Seismic Risk Assessment reports need specific and consistent measures forassessing the possibility of future loss due to earthquake occurrences. This guide discusses specificapproaches that the real estate and te

5、chnical communities can consider a basis for characterizing theseismic risk assessment of buildings in an earthquake. It uses two concepts to characterize earthquakeloss: probable loss (PL) and scenario loss (SL). Use of the term probable maximum loss (PML) isacceptable, provided it is specifically

6、and adequately defined by the User.1. Scope1.1 This guide provides guidance on conducting seismicrisk assessments for buildings. As such, this guide assists aUser to assess a propertys potential for losses from earthquakeoccurrences.1.1.1 Hazards addressed in this guide include:1.1.1.1 Earthquake gr

7、ound shaking,1.1.1.2 Earthquake-caused site instability, including faultrupture, landslides, soil liquefaction, lateral spreading andsettlement, and1.1.1.3 Earthquake-caused off-site response impacting theproperty, including flooding from dam or dike failure, tsunamisand seiches.1.1.2 This guide doe

8、s not address the following:1.1.2.1 Earthquake-caused fires and toxic materials releases.1.1.2.2 Federal, state, or local laws and regulations ofbuilding construction or maintenance. Users are cautioned thatcurrent federal, state, and local laws and regulations may differfrom those in effect at the

9、time of the original construction ofthe building(s).1.1.2.3 Preservation of life safety.1.1.2.4 Prevention of building damage.1.1.2.5 Contractual and legal obligations between prior andsubsequent Users of seismic risk assessment reports or betweenProviders who prepared the report and those who would

10、 like touse such prior reports.1.1.2.6 Contractual and legal obligations between a Pro-vider and a User, and other parties, if any.1.1.3 It is the responsibility of the User of this guide toestablish appropriate life safety and damage prevention prac-tices and determine the applicability of current

11、regulatorylimitations prior to use.1.2 The objectives of this guide are:1.2.1 To synthesize and document guidelines for seismicrisk assessment of buildings;1.2.2 To encourage standardized seismic risk assessments;1.2.3 To establish guidelines for field observations of thesite and physical conditions

12、, and the document review andresearch considered appropriate, practical, sufficient, and rea-sonable for seismic risk assessment;1.2.4 To establish guidelines on what reasonably can beexpected of and delivered by a Provider in conducting theseismic risk assessment of buildings; and1.2.5 To establish

13、 guidelines by which a Provider cancommunicate to the User observations, opinions, and conclu-sions in a manner that is meaningful and not misleading eitherby content or by omission.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathemati

14、calconversions to SI units that are provided for information onlyand are not considered standard.1This guide is under the jurisdiction of ASTM Committee E06 on Performanceof Buildings and is the direct responsibility of Subcommittee E06.25 on WholeBuildings and Facilities.Current edition approved Ma

15、y 15, 2016. Published June 2016. Originallyapproved in 1999. Last previous edition approved in 2016 as E2026-16. DOI:10.1520/E2026-16A.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States12. Referenced Documents2.1 ASTM Standards:2E631 Ter

16、minology of Building Constructions2.2 ICC Standard:3IBC International Building Code, current edition2.3 Other ReferencesThe following resource documentsprovide technical guidance for the seismic evaluation andretrofit of existing buildings:4ASCE 7-10 Minimum Design Loads for Buildings and OtherStruc

17、turesASCE 31 Seismic Evaluation of Existing Buildings5ASCE 41-13 Seismic Evaluation and Retrofit of ExistingBuildings63. Terminology3.1 Definitions:3.1.1 See Terminology E631.3.1.2 For definition of terms related to buildingconstruction, ASCE 31 and ASCE 41 provide additionalresources for understand

18、ing terminology and language relatedto seismic performance of buildings.3.1.3 For definition of terms and additional detailed infor-mation on concepts related to seismic events and structuraldesign, see references at the end of this document.3.2 Definitions of Terms Specific to This StandardThissect

19、ion provides definitions of concepts and terms specific tothis guide. The concepts and terms are an integral part of thisguide and are critical to an understanding of this guide and itsuse.3.2.1 active earthquake fault, nan earthquake fault thathas exhibited surface displacement within Holocene time

20、typically about the last 11 000 years.3.2.2 building code, na collection of laws (regulations,ordinances, or statutory requirements) applicable to buildings,adopted by governmental (legislative) authority and adminis-tered with the primary intent of protecting public health, safety,and welfare.3.2.3

21、 building systems, nall physical systems that com-prise a building and its services.3.2.3.1 DiscussionThis includes architectural, structural,mechanical, plumbing, electrical, fire life-safety, vertical trans-portation and security systems. More specifically architecturalsystems include non-structur

22、al building envelopes, roofing,ceilings, partitions, non-structural demising walls etc; struc-tural systems include both gravity and seismic force-resistingsystems and foundations; mechanical systems include heating,ventilating and air conditioning equipment, ducts, controlsystems etc; plumbing syst

23、ems include domestic water heaters,piping, controls, plumbing fixtures, waste water system pipingand natural gas or propane systems, storm water drains andpumps etc; electrical systems include switchgear, transformers,breakers, wiring, lighting fixtures, emergency power systemsetc; and fire life-saf

24、ety systems include fire sprinkler systems,monitoring and alarm systems etc. Not included in buildingsystems are those contained within a building and defined ascontents.3.2.4 business interruption, na period of interruption tonormal business operations that can potentially or materiallycause a loss

25、 to the owner/operator of that business through lossof use of the building until use is restored consistent withbusiness operations.3.2.4.1 DiscussionThe loss may be partial or total for theperiod under consideration. Business interruption is expressedin days/weeks/months of downtime for the buildin

26、g as a wholeor the equivalent operating value.3.2.5 construction documents, ndocuments used in theinitial construction phase and any subsequent modification(s)of building(s) for which the seismic risk assessment is pre-pared. Construction documents include drawings, calculations,specifications, geot

27、echnical reports, construction reports, andtesting results.3.2.5.1 DiscussionGenerally as-built plans are the pre-ferred form of construction documents.3.2.6 contents, nelements contained within the buildingthat are not defined as building systems.3.2.6.1 DiscussionExamples include tenant-installede

28、quipment, storage racks, material handling systems, shelving,stored inventories, furniture, fixtures, office machines, com-puter equipment, filing cabinets, and personal property.3.2.7 correlation, nthe tendency or likelihood of thebehavior of one element to be influenced by the knownbehavior of ano

29、ther element.3.2.8 damage or repair cost, ncost required to restore thebuilding to its pre-earthquake condition, allowing for salvageand demolition.3.2.8.1 DiscussionThe value includes hard costs of con-struction as well as soft costs for design, site supervision,management, etc. (See also replaceme

30、nt cost.)3.2.9 damage ratio, nratio of the damage or repair costdivided by the replacement cost.3.2.10 dangerous conditions, nsituations that pose a threator possible injury to the occupants or adjacent area consistentwith IBC definition.3.2.11 deficiency, nconspicuous defect(s) in the buildingor si

31、gnificant deferred maintenance items of a building and itscomponents or equipment.3.2.11.1 DiscussionConditions resulting from the lack ofroutine maintenance, miscellaneous repairs, operatingmaintenance, etc. are not considered a deficiency.3.2.12 demand surge, na temporary economic conditionfollowi

32、ng a large or great earthquake in which the increaseddemand for materials, labor, and services results in an increase2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to

33、 the standards Document Summary page onthe ASTM website.3Available from International Code Council (ICC), 500 New Jersey Ave., NW,6th Floor, Washington, DC 20001, http:/www.iccsafe.org.4Available from American Society of Civil Engineers (ASCE), 1801 AlexanderBell Dr., Reston, VA 20191, http:/www.asc

34、e.org.5The successor of FEMA 310 issued as a standard in 2003, with periodicrevisions.6The successor of FEMA 356 issued as a standard in 2006, with periodicrevisions.E2026 16a2in the cost and time to repair damage to buildings compared tothe cost and time to repair the same damage under normalcondit

35、ions or following smaller earthquakes.3.2.12.1 DiscussionThe phenomenon results from a com-plex time-dependent process of supply and demand. Objectiveand complete datasets for demand surge for large to greatearthquakes in the United States are unavailable, as arepeer-reviewed public models to reliab

36、ly predict the effects ofdemand surge.3.2.13 design basis earthquake (DBE), nthe site groundmotion with a 10 % probability of exceedance in 50 years,equivalent to a 475-year return period for exceedance, or a0.2105 % annual probability of occurrence.3.2.13.1 DiscussionThe design basis earthquake gro

37、undmotions are associated with any earthquake that has thespecified site ground motion value; often there are severalearthquakes with different magnitudes and causative faults thatyield equivalent site peak ground motions.3.2.14 distribution function, nthe probability distributionfor a random variab

38、le.3.2.14.1 DiscussionThe random variable may includesuch things as loss, ground motion, or other consequence ofearthquake occurrence.7,8,93.2.15 due diligence, nthe assessment of the condition ofa property for the purposes of identifying conditions orcharacteristics of the property, including poten

39、tially dangerousconditions, that may be important to determining the appropri-ateness of the property for financial or real estate transactions.3.2.15.1 DiscussionThe extent of due diligence exercisedon behalf of a User is usually related to the Users tolerance foruncertainty, the purpose of seismic

40、 risk assessment, the re-sources and time available to the Provider to conduct the sitevisit and review construction documents.3.2.16 expected value, nof a random variable, the averageor mean of the distribution function.3.2.16.1 DiscussionThe expected value is determined asthe sum (or integral) of

41、all the values that can occur multipliedby the probability of their occurrence. (Compare: medianvalue.)3.2.17 fault zone, narea within a prescribed distance fromany of the surface traces of a fault.3.2.17.1 DiscussionThe distance depends on the magni-tude of earthquakes that could occur on the fault

42、typically500 ft (152 m) from major faults, which are those capable ofearthquakes with magnitudes of 6.5 or greater, and 250 ft(761 m) away from other well-defined faults. WithinCalifornia, the fault zones are determined by the CaliforniaGeological Survey under the Earthquake Special Studies ZonesAct

43、 for active and potentially active faults that have beenidentified by the state or other governmental bodies.3.2.18 field assessor, nthe person assigned by the SeniorAssessor who conducts the site visits of the property toobserve, evaluate, and document the lateral load-resistingsystem. Other qualif

44、ied persons may assist the Field Assessor.See 6.2.3 for qualifications required to perform such functionsfor Level 1 or higher assessments.3.2.19 independent reviewer, nindependent technicallyqualified individual or organization that has not been engagedin the design or modifications of the building

45、(s), and is not inany way affiliated with the Provider.3.2.19.1 DiscussionThe concept may also be representedby the phrase “Independent Peer Reviewer.” IndependentReview is conducted during the seismic risk assessment (andtypically involves interaction with the Provider) rather thanafter the complet

46、ion of the seismic risk assessment by a ThirdParty Reviewer. See 6.4 and 6.5.3.2.20 interdependency, na condition wherein the func-tion of the building is dependent on another building, onutilities, or on other critical elements in the supply chain.3.2.20.1 DiscussionOther critical elements include

47、trans-portation and may include a customer, vendor (for example,supplier of materials), contractor (supplier of services), staff(for example, supplier of staff), information (for example, dataprocessing for accounting or distribution), etc.3.2.21 landslide, n(1) ground motion, the rapiddownslope mov

48、ement of soil or rock material, or both, oftenlubricated by ground water, over a basal shear zone; and (2)geological, stationary material deposited in the past by therapid downslope movement of soil or rock material, or both.3.2.22 lateral load-resisting system, nthe elements of thestructural system

49、 that provide support and stability to thebuilding under seismic and wind forces.3.2.23 magnitude of earthquake, nany of a variety ofmeasures that indicates the “size” or “energy release” of anearthquake.3.2.23.1 DiscussionAt least 20 different magnitude scalesare in use within the technical community. The most commonlyused lay term is the Richter magnitude, which is determined bytaking the common logarithm (base 10) of the largest groundmotion recorded during the arrival of a “P” wave, or seismicsurface wave, and applying a standard correc

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1