ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf

上传人:progressking105 文档编号:432650 上传时间:2018-11-11 格式:PDF 页数:6 大小:95.54KB
下载 相关 举报
ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf_第1页
第1页 / 共6页
ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf_第2页
第2页 / 共6页
ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf_第3页
第3页 / 共6页
ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf_第4页
第4页 / 共6页
ANSI ASTM E2653-2015 Standard Practice for Conducting an Interlaboratory Study to Determine Precision Estimates for a Fire Test Method with Fewer Than Six Participating Laboratorie.pdf_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、Designation: E2653 15 An American National StandardStandard Practice forConducting an Interlaboratory Study to Determine PrecisionEstimates for a Fire Test Method with Fewer Than SixParticipating Laboratories1This standard is issued under the fixed designation E2653; the number immediately following

2、 the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice describ

3、es the techniques for planning,conducting, analyzing, and treating results of an interlaboratorystudy (ILS) for estimating the precision of a fire test methodwhen fewer than six laboratories are available to meet therecommended minimum requirements of Practice E691. Dataobtained from an interlaborat

4、ory study are useful in identifyingvariables that require modifications for improving test methodperformance and precision.1.2 Precision estimates developed using this practice willnot be statistically equivalent to precision estimates producedby Practice E691 because a small number of laboratories

5、areused. The smaller number of participating laboratories willseriously reduce the value of precision estimates reported bythis practice. However, under circumstances where only alimited number of laboratories are available to participate in anILS, precision estimates developed by this practice will

6、 pro-vide the user with useful information concerning precision fora test method.1.3 A minimum of three qualified laboratories is requiredfor conducting an ILS using this practice. If six or morelaboratories are available to participate in an ILS for a givenfire test method, Practice E691 shall be u

7、sed for conducting theILS.1.4 Since the primary purpose of this practice is the devel-opment of the information needed for a precision statement, theexperimental design in this practice will not be optimum forevaluating all materials, test methods, or as a tool for individuallaboratory analysis.1.5

8、Because of the reduced number of participating labora-tories a Laboratory Monitor shall be used in the ILS. SeeStandard Guide E2335.1.6 Field of ApplicationThis practice is concerned withtest methods that yield numerical values or a series ofnumerical values for different fire-test response properti

9、es. Thenumerical values mentioned above are typically the result ofcalculations from a set of measurements.1.7 This practice includes design information suitable foruse with the development of interlaboratory studies for testmethods that have categorization (go-no-go) allocation testresults. However

10、, it does not provide a recommended statisticalpractice for evaluating the go-no-go data.1.8 This fire standard cannot be used to provide quantitativemeasures.1.9 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user

11、 of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E176 Terminology of Fire StandardsE177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE178 P

12、ractice for Dealing With Outlying ObservationsE456 Terminology Relating to Quality and StatisticsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE1169 Practice for Conducting Ruggedness TestsE2335 Guide for Laboratory Monitors3. Terminology3.1 Definiti

13、onsFor formal definitions of statistical terms,see Terminology E456. For formal definitions of fire terms, seeTerminology E176.3.2 Definitions of Terms Specific to This Standard:1This practice is under the jurisdiction of ASTM Committee E05 on FireStandards and is the direct responsibility of Subcom

14、mittee E05.31 on Terminologyand Services / Functions.Current edition approved July 1, 2015. Published August 2015. Originallyapproved in 2008. Last previous edition approved in 2014 as E2653-14. DOI:10.1520/E2653-15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM

15、 Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.1 protocol, nin this practi

16、ce, directions given to thelaboratories for conducting the interlaboratory study (ILS).3.2.2 repeatability (of results and measurements),nquantitative expression of the random variability associatedwith successive measurements of the same measurand carriedout subject to all of the following conditio

17、ns: the samemeasurement procedure, the same observer, the same measur-ing instrument, used under the same conditions, the samelocation, and repetition over a short period of time.3.2.2.1 DiscussionRepeatability deals with results in asingle laboratory while reproducibility deals with results ob-tain

18、ed in different laboratories.3.2.3 reproducibility (of results of measurements),nquantitative expression of the random variability associatedwith successive measurements of the same measurand carriedout by operators working in different laboratories, each obtain-ing single results on identical test

19、material when applying thesame method.3.2.3.1 DiscussionRepeatability deals with results in asingle laboratory while reproducibility deals with results ob-tained in different laboratories.3.2.4 test method, nin this practice, description of theactual measurement process as well as written descriptio

20、n ofthe process.3.3 For further discussion of the terms discussed above, seePractice E177 and the formal definitions in Terminology E456.4. Summary of Practice4.1 The procedure presented in this practice consists ofthree basic steps: planning the interlaboratory study, guidingthe testing phase of th

21、e study, and analyzing the test result data.The analysis evaluates the consistency of the data through theuse of numerical estimates of precision of the test methodpertaining to both within-laboratory repeatability and between-laboratory reproducibility.4.2 Planning of the interlaboratory study will

22、 include areview of the test procedure to be used in the interlaboratorystudy. This review will identify portions of the test method thatappear to contribute to a loss in precision. Special interlabora-tory instructions or modifications to the test method wordingare made as needed to clarify these s

23、ections and often result ina modification to the test method following the interlaboratorystudy.4.3 A manager for the interlaboratory study and an inter-laboratory test monitor shall be selected. The same person isallowed to conduct both functions.4.4 Parties conducting an interlaboratory precision

24、study ofa test method will acquire participation agreements with asmany laboratories as possible that are willing to take part in theinterlaboratory study and have the capability to run the testmethod of interest. A minimum of three laboratories shallparticipate in the precision study. Precision res

25、ults will increasein quality with a larger number of participating laboratories.4.5 The types of materials and number of test specimensshall be selected for the interlaboratory study. No less thanthree test specimens shall be selected for the interlaboratorystudy, and they shall be selected to refle

26、ct the range ofperformance of test specimens normally evaluated by the testmethod.Aminimum of three replicates shall be tested for eachtest material selected. If a standard reference material isavailable for the test method, the material shall be included asa specimen in the interlaboratory study. I

27、f a standard referencematerial is not available, a test specimen that consistentlyproduces low variability test results shall be selected as areference material for the interlaboratory study.5. Significance and Use5.1 ASTM regulations require precision statements in alltest methods in terms of repea

28、tability and reproducibility. Thispractice is used when the number of participating laboratoriesor materials being tested, or both, in a precision study is lessthan the number specified by Practice E691. When possible, itis strongly recommended that a full E691 standard protocol befollowed to determ

29、ine test method precision. Precision resultsproduced by the procedures presented in this standard will nothave the same degree of accuracy as results generated by a fullE691 protocol. This procedure will allow for the developmentof useful precision results when a full compliment of labora-tories is

30、not available for interlaboratory testing.5.2 This practice is based on recommendations for inter-laboratory studies and data analysis presented in Practice E691.This practice does not concern itself with the development oftest methods but with a standard means for gathering informa-tion and treatin

31、g the data needed for developing a precisionstatement for a fire test method when a complete E691interlaboratory study and data analysis are not possible.PLANNING THE ILS6. Planning6.1 Task GroupEither the task group that developed thetest method or a special task group appointed for the purposemust

32、 have overall responsibility for the ILS, including fundingwhere appropriate, staffing, the design of the ILS, and decision-making with regard to questionable data. The task group shalldecide on the number of laboratories, materials, and test resultsfor each material. In addition, it shall specify a

33、ny specialcalibration procedures and the repeatability conditions to bespecified in the protocol.6.2 ILS CoordinatorThe task group must appoint oneindividual to act as overall coordinator for conducting the ILS.The coordinator will supervise the distribution of materials andprotocols to the laborato

34、ries and receive the test result reportsfrom the laboratories. Scanning the reports for gross errors andchecking with the laboratories, when such errors are found,will also be the responsibility of the coordinator. The coordi-nator will consult as needed with a statistician in questionablecases.6.3

35、Laboratory MonitorThe task group must appoint oneindividual to act as a laboratory monitor for the ILS. Thelaboratory monitor will develop an ILS checklist specific to thetest method, inspect the test laboratories for equipment con-formity and operator training, verify compatibility of the dataacqui

36、sition system, and based on the Checklist and inspectionE2653 152results report to the sponsoring ASTM Subcommittee. Com-plete details for the function of a laboratory monitor are locatedin Guide E2335.6.4 StatisticianThe task group shall obtain the assistanceof a person skilled in the use of statis

37、tical procedures, the testmethod being studied, and with the materials being tested inorder to ensure that the requirements in this practice are met inan efficient and effective manner. This person will conduct thedata analysis using procedures given in this standard and willassist the task group in

38、 interpreting results from the dataanalysis.7. Basic Design7.1 Keep the ILS design simple in order to obtain estimatesof within-and between-laboratory variability that are free ofsecondary effects. The basic design is represented by a two-way classification table in which the rows represent thelabor

39、atories, the columns represent the materials, and the cell(the intersection of a row and column) contains the test resultsmade by a particular laboratory on a particular material (seeTable 1).7.2 An ILS using this practice shall include enough labora-tories to represent a reasonable cross-section of

40、 the populationof qualified laboratories. A minimum of three laboratories isnecessary for carrying out an ILS using this practice.8. Test Method8.1 Of prime importance is the existence of a valid, well-written test method that has been developed in one or morecompetent laboratories, and had been sub

41、jected to a ruggednesstest prior to the ILS.8.2 The ruggedness test is a screening procedure for inves-tigating the effects of variations in environmental and otherconditions in order to determine how control of such testconditions shall be specified in the written description of themethod. Details

42、for ruggedness testing are found in GuideE1169.8.3 A written version of the test method must be developedfor the ILS (but not necessarily published as a standardmethod). This draft shall describe the test apparatus andprocedure in terms that are easily understood and followed inany properly equipped

43、 laboratory by competent personnel withknowledge of the materials and the property to be tested. Themethod shall contain safety and calibration procedures, detailson control related limits that potentially cause test resultvariability, and specify how test results are to be reported.ILS TESTING9. Pi

44、lot Run9.1 Prior to beginning testing for the formal ILS a prelimi-nary laboratory evaluation study shall be carried out using awell characterized test material of known performance. Thispreliminary study is managed by the ILS Coordinator andLaboratory Monitor and is used to determine if each of the

45、participating laboratories are capable of conducting tests asspecified by the written ILS test method. These preliminarytests conducted in the participating laboratories are typicallyobserved by the Laboratory Monitor as a part of the laboratoryqualification process.9.2 The pilot run results give th

46、e task group an indication ofhow well each laboratory will perform in terms of promptnessand following the protocol. Laboratories with poor perfor-mance are encouraged and helped to take corrective action.9.3 All steps of the procedures described in this practiceshall be followed in detail to ensure

47、 that these directions areunderstood, to disclose any weakness in the protocol or testmethod.10. Full Scale Run10.1 Materials Preparation and Distribution:10.1.1 Sample Preparation and LabelingPrepare enoughof each material to supply at least 50 % more than needed bythe number of laboratories commit

48、ted to the ILS. Label eachtest unit or specimen with a letter for the material and asequential number. Thus, for three laboratories and threeresults for each laboratory the test units for materials B wouldbe numbered from B1 to B14.10.1.2 RandomizationFor each material independently,allocate the spe

49、cified number of test units or test specimens toeach laboratory, using a random number table, or a suitablecomputerized random number based program.10.1.3 ShippingEnsure that the test specimens are pack-aged properly to arrive in the desired condition. Clearlyindicate the name of the person who has been designated asILS supervisor at the laboratory on the address of eachpackage. Follow shipping directions provided by each labora-tory to ensure prompt delivery of the package.10.1.4 Follow-upOnce the test specimens have beenshipped, the ILS coordinator shall call each la

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1